annular diffuser
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 13)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Hardial Singh ◽  
◽  
Arora B.B ◽  

In the present work, the parallel hub axial flow annular diffuser's performance characteristics with divergent casing varying between equivalent cone angle (10°, 15°, and 20°) with area ratio 3 have been evaluated computationally as well as experimentally. The performance of three diffusers were tested at different inlet swirl angles (from 0° to 25°) for swirling and non-swirling flow. Simulations have been carried out on a fully developed flow at Reynolds number 2.5×105. The results were analyzed based on the velocity profiles, static pressure recovery coefficient, and the total pressure loss coefficient. The result analysis shows that the inlet swirl flow improves the recovery of pressure and also delays the flow separation on the casing. Moreover,the findings also show that the best performance was achieved in equivalent cone angle 10° at the inlet swirl angle of 7.5° compared to other diffusers.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5171
Author(s):  
Byung Ju Lee ◽  
Jin Taek Chung

In this study, we numerically investigated the effects of design parameters, such as the strut geometry or diffusion angle, on the performance of an industrial turbine exhaust diffuser. Turbine exhaust diffusers are commonly used to change the kinetic energy of exhaust gases from the outlet of turbine stages into the static pressure. The turbine exhaust diffuser investigated in this work consisted of an annular diffuser with five identical struts equally spaced around the front circumference and a conical diffuser with a hub extension at the rear. Four design parameters were considered and several values for each parameter were tested in this study. The aerodynamic performances of the studied diffusers were evaluated according to their pressure recovery coefficients and rates of total pressure loss. Contours for the velocity, pressure, and entropy increase were plotted and compared for the various diffuser shapes. The numerical results showed that the strut thickness and the axially swept angle of the strut significantly influence the aerodynamic performance of the turbine exhaust diffuser, whereas the strut lean angle and the diffuser hade angle are less important.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hardial Singh ◽  
Bharat Bhushan Arora

Abstract An annular diffuser is a critical component of the turbomachinery, and its prime function is to reduce the flow velocity. The current work is carried to study the effect of four different geometrical designs of an annular diffuser using the ANSYS Fluent. The numerical simulations were carried out to examine the effect of fully developed turbulent swirling and non-swirling flow. The flow behavior of the annular diffuser is analyzed at Reynolds number 2.5 × 105. The simulated results reveal pressure recovery improvement at the casing wall with adequate swirl intensity at the diffuser inlet. Swirl intensity suppresses the flow separation on the casing and moves the flow from the hub wall to the casing wall of the annulus region. The results also show that the Equal Hub and Diverging Casing (EHDC) annular diffuser in comparison to other diffusers has a higher static pressure recovery (C p  = 0.76) and a lower total pressure loss coefficient of (C L  = 0.12) at a 17° swirl angle.


R&D Journal ◽  
2021 ◽  
Vol 37 ◽  
Author(s):  
G. M. Bekken ◽  
C. J. Meyer ◽  
S. J. van der Spuy

ABSTRACT This study illustrates that downstream diffusers can significantly aid the performance of an induced draught axial flow fan. Two conical diffusers of length 0.2 and 0.4 times the fan diameter and an annular diffuser with a length equal to the fan diameter are tested. At the design flow rate of the fan, the short conical diffuser increases the available static pressure by 17.6 % and the static efficiency by 8.9 %. The medium-length conical diffuser increases it by 21.9 % and 11.7 %, respectively. The long annular diffuser produces a 28.2 % pressure increase and a 14.2 % efficiency increase. The paper also compares the obtained pressure recovery coefficients of the different discharge diffusers using two-dimensional axisymmetric and three-dimensional computations. It shows that the pressure at the outlet of the fan cannot be assumed to be equal to atmospheric pressure, as is prescribed by the fan testing standards. A new method of measuring pressure recovery from two-dimensional computations is proposed. Additional keywords: Pressure recovery, axial flow fan, diffuser.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hardial Singh ◽  
B.B. Arora

Abstract In this paper, the effects of non-swirling and swirling flow on the performance of parallel hub axial annular diffuser has been investigated. The study was conducted on a fully developed swirling flow and non-swirling flow to predict the separation of the flow from the wall. Three different annular diffusers were used with casing wall angles of 3°, 6°, and 9°. Furthermore, various swirl angles (0–25°) at the inlet of diffusers have been investigated to analyze the performance across the length. It was found that parallel hub axial annular diffuser performance increases up to a certain length as the inlet swirl angle increases. However, the performance also improves as the diffuser area ratio (AR) increases. The performance is evaluated based on the static pressure recovery coefficient (Cp) and the total pressure loss coefficient (CTL). The highest possible pressure recovery is achieved by the 12° swirl angle with a casing angle of 6°.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hardial Singh ◽  
B.B. Arora

AbstractIn this paper, the effects of non-swirling and swirling flow on the performance of parallel hub axial annular diffuser has been investigated. The study was conducted on a fully developed swirling flow and non-swirling flow to predict the separation of the flow from the wall. Three different annular diffusers were used with casing wall angles of 3°, 6°, and 9°. Furthermore, various swirl angles (0–25°) at the inlet of diffusers have been investigated to analyze the performance across the length. It was found that parallel hub axial annular diffuser performance increases up to a certain length as the inlet swirl angle increases. However, the performance also improves as the diffuser area ratio (AR) increases. The performance is evaluated based on the static pressure recovery coefficient (Cp) and the total pressure loss coefficient (CTL). The highest possible pressure recovery is achieved by the 12° swirl angle with a casing angle of 6°.


Author(s):  
Nagendra Kumar Sharma

A diffuser is a mechanical device used for converting the kinetic energy of flowing fluid into pressure energy. As the flow advances through the diffuser there is ongoing retardation of the flow resulting in conversion of kinetic energy into pressure energy. This is known as diffusion. Diffuser constitutes an essential part in turbo machinery and engineering structures. The present study aims at CFD analysis for the prediction of flow characteristics using various mathematical models. The annular diffuser considered in the present case has both the hub and casings are diverging with equal angles and hub angle keeping constant as 10°. The characteristic quantity such as velocity profiles at various sections and flow patterns have been presented for studying. Standard turbulence models are studied in the present study.


Sign in / Sign up

Export Citation Format

Share Document