A Surface Crack in Shells Under Mixed-Mode Loading Conditions

1988 ◽  
Vol 55 (4) ◽  
pp. 795-804 ◽  
Author(s):  
P. F. Joseph ◽  
F. Erdogan

The problem of a shallow shell containing a surface crack and subjected to general loading conditions is considered. It is shown that, as in the three-dimensional elasticity formulation, the mode I state can be separated whereas modes II and III remain coupled. A line spring model is developed to formulate the part-through crack problem under mixed-mode conditions. A shallow shell of arbitrary curvature having a part-through crack located on the outer or the inner surface of the shell is then considered. Reissner’s transverse shear theory is used to formulate the problem by assuming that the shell is subjected to all five moment and stress resultants. The uncoupled antisymmetric problem is solved for cylindrical and toroidal shells having a surface crack in various orientations and the primary and the secondary stress intensity factors are given. The results show that, unlike the through crack problems, in surface cracks the effect of shell curvature on the stress intensity factors is relatively insignificant.

2009 ◽  
Vol 631-632 ◽  
pp. 109-114
Author(s):  
Sadik Kosker ◽  
Serkan Dag ◽  
Boray Yildirim

This study presents a three dimensional finite element method for mixed-mode fracture analysis of an FGM coating-bond coat-substrate structure. The FGM coating is assumed to contain an inclined semi-elliptical crack at the free surface. The trilayer structure is examined under the effect of transient thermal stresses. Strain singularity around the crack front is simulated by utilizing collapsed wedge-shaped singular elements. The modes I, II and III stress intensity factors are computed by applying the displacement correlation technique and presented as a function of time. Four different FGM coating types are examined in the parametric analyses which are metal-rich, ceramic-rich, linear variation and homogeneous coatings. The results provided illustrate the influences of the FGM coating type and crack inclination angle on the transient behavior of the mixed-mode stress intensity factors.


Author(s):  
M. Gosz ◽  
R. Cammino

A numerical procedure is described for extracting mixed-mode stress intensity factors along the fronts of three-dimensional, nonplanar cracks embedded in solids. The mixed-mode stress intensity factors at points along the crack front are obtained by evaluating interaction energy integrals for three-dimensional, non-planar cracks. To assess the validity of the numerical procedure, two numerical examples are considered. First, we consider the problem of a non-planar, lens-shaped crack in an infinite solid subjected to hydrostatic tension. The numerical results are shown to be in excellent agreement with available analytical results. We then consider the case of a non-planar, warped elliptical crack surface, where to our knowledge no analytical solution exists, and the results are discussed.


Sign in / Sign up

Export Citation Format

Share Document