Closed Form Solution of the Exterior-Point Eshelby Tensor for an Elliptic Cylindrical Inclusion

2009 ◽  
Vol 77 (2) ◽  
Author(s):  
B. R. Kim ◽  
H. K. Lee

With the help of the I-integrals expressed by Mura (1987, Micromechanics of Defects in Solids, 2nd ed., Martinus Nijhoff, Dordrecht) and the outward unit normal vector introduced by Ju and Sun (1999, “A Novel Formulation for the Exterior-Point Eshelby’s Tensor of an Ellipsoidal Inclusion,” ASME Trans. J. Appl. Mech., 66, pp. 570–574), the closed form solution of the exterior-point Eshelby tensor for an elliptic cylindrical inclusion is derived in this work. The proposed closed form of the Eshelby tensor for an elliptic cylindrical inclusion is more explicit than that given by Mura, which is rough and unfinished. The Eshelby tensor for an elliptic cylindrical inclusion can be reduced to the Eshelby tensor for a circular cylindrical inclusion by letting the aspect ratio of the inclusion α=1. The closed form Eshelby tensor presented in this study can contribute to micromechanics-based analysis of composites with elliptic cylindrical inclusions.

2011 ◽  
Vol 78 (3) ◽  
Author(s):  
Xiaoqing Jin ◽  
Leon M. Keer ◽  
Qian Wang

From the analytical formulation developed by Ju and Sun [1999, “A Novel Formulation for the Exterior-Point Eshelby’s Tensor of an Ellipsoidal Inclusion,” ASME Trans. J. Appl. Mech., 66, pp. 570–574], it is seen that the exterior point Eshelby tensor for an ellipsoid inclusion possesses a minor symmetry. The solution to an elliptic cylindrical inclusion may be obtained as a special case of Ju and Sun’s solution. It is noted that the closed-form expression for the exterior-point Eshelby tensor by Kim and Lee [2010, “Closed Form Solution of the Exterior-Point Eshelby Tensor for an Elliptic Cylindrical Inclusion,” ASME Trans. J. Appl. Mech., 77, p. 024503] violates the minor symmetry. Due to the importance of the solution in micromechanics-based analysis and plane-elasticity-related problems, in this work, the explicit analytical solution is rederived. Furthermore, the exterior-point Eshelby tensor is used to derive the explicit closed-form solution for the elastic field outside the inclusion, as well as to quantify the elastic field discontinuity across the interface. A benchmark problem is used to demonstrate a valuable application of the present solution in implementing the equivalent inclusion method.


2013 ◽  
Vol 40 (2) ◽  
pp. 106-114
Author(s):  
J. Venetis ◽  
Aimilios (Preferred name Emilios) Sideridis

2021 ◽  
Vol 10 (7) ◽  
pp. 435
Author(s):  
Yongbo Wang ◽  
Nanshan Zheng ◽  
Zhengfu Bian

Since pairwise registration is a necessary step for the seamless fusion of point clouds from neighboring stations, a closed-form solution to planar feature-based registration of LiDAR (Light Detection and Ranging) point clouds is proposed in this paper. Based on the Plücker coordinate-based representation of linear features in three-dimensional space, a quad tuple-based representation of planar features is introduced, which makes it possible to directly determine the difference between any two planar features. Dual quaternions are employed to represent spatial transformation and operations between dual quaternions and the quad tuple-based representation of planar features are given, with which an error norm is constructed. Based on L2-norm-minimization, detailed derivations of the proposed solution are explained step by step. Two experiments were designed in which simulated data and real data were both used to verify the correctness and the feasibility of the proposed solution. With the simulated data, the calculated registration results were consistent with the pre-established parameters, which verifies the correctness of the presented solution. With the real data, the calculated registration results were consistent with the results calculated by iterative methods. Conclusions can be drawn from the two experiments: (1) The proposed solution does not require any initial estimates of the unknown parameters in advance, which assures the stability and robustness of the solution; (2) Using dual quaternions to represent spatial transformation greatly reduces the additional constraints in the estimation process.


Author(s):  
Puneet Pasricha ◽  
Anubha Goel

This article derives a closed-form pricing formula for the European exchange option in a stochastic volatility framework. Firstly, with the Feynman–Kac theorem's application, we obtain a relation between the price of the European exchange option and a European vanilla call option with unit strike price under a doubly stochastic volatility model. Then, we obtain the closed-form solution for the vanilla option using the characteristic function. A key distinguishing feature of the proposed simplified approach is that it does not require a change of numeraire in contrast with the usual methods to price exchange options. Finally, through numerical experiments, the accuracy of the newly derived formula is verified by comparing with the results obtained using Monte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document