composite tubes
Recently Published Documents


TOTAL DOCUMENTS

602
(FIVE YEARS 119)

H-INDEX

43
(FIVE YEARS 7)

Author(s):  
A. N. Polilov ◽  
D. D. Vlasov ◽  
O. Yu. Sklemina ◽  
N. A. Tatus’

2022 ◽  
Vol 314 ◽  
pp. 125608
Author(s):  
Yang Wei ◽  
Pengfei Xu ◽  
Yirui Zhang ◽  
Gaofei Wang ◽  
Kaiqi Zheng

Author(s):  
P. Davies ◽  
R. Baizeau ◽  
D. Choqueuse ◽  
L. Salmon ◽  
F. Nagot
Keyword(s):  

Author(s):  
Zhibo Song ◽  
Shizhao Ming ◽  
Kaifan Du ◽  
Shaojun Feng ◽  
Caihua Zhou ◽  
...  

2021 ◽  
pp. 096739112110598
Author(s):  
Hani Yadegari ◽  
Reza Taherian ◽  
Soheil Dariushi

Nowadays, composite tubes have a wide range of applications in industries. Composite tubes are appropriate alternatives for metal energy absorbers. In this investigation, aluminum-composite tubes are made using Filament Winding (FW) and hand lay-up methods. Carbon Fiber (CF) and Glass Fiber (GF) are used in the FW method, and for the hand lay-up method, glass cloth is used. Five samples were fabricated with different stacking sequences, specimens with one, two, and three glass layers, one carbon layer, and hybrid carbon/glass layers. Characterization is performed by Scanning Electron Microscopy (SEM) analysis and mechanical tests (bending, compressive, and fatigue). The maximum bending force in the triple-layer GF tube is higher than other samples, while the maximum compressive force is observed in the hybrid carbon and GF tube. On the other hand, the fatigue strength of single-layer CF tubes is higher than single-layer GF tubes, so that the fracture cycles of single-layer CF tubes (600597) is significantly more than that of single-layer GF tubes (470068) at the force of 35  N. In addition, the compressive and bending energies absorption of samples were calculated. The hybrid carbon and GF tube absorbed higher energy than other samples. In GF and CF hybrid tubes, failure did not occur suddenly but gradually. This appropriate failure mechanism in the hybrid tube resulted in higher energy absorption and made it a suitable choice for industrial applications.


Author(s):  
Romain Guélou ◽  
Florent Eyma ◽  
Arthur Cantarel ◽  
Samuel Rivallant ◽  
Bruno Castanié

Sign in / Sign up

Export Citation Format

Share Document