Minimum Weight Design of a Rotor Bearing System With Multiple Frequency Constraints

1988 ◽  
Vol 110 (4) ◽  
pp. 592-599 ◽  
Author(s):  
Ting Nung Shiau ◽  
Jon Li Hwang

The objective of the present study is to develop an efficient design algorithm for minimum weight design of a rotor bearing system under the requirements of operational speed range, i.e., multiple frequency constraints, to increase the performance of an existent rotor system. The system is modeled as an assemblage of rigid disks, shaft elements with distributed mass and stiffness, and discrete bearings. The system design variables are the inner radius of shaft elements and the stiffnesses of bearings. The optimization techniques employed to compare the results are method of exterior penalty function, method of feasible directions, and method of modified feasible directions. The parameter sensitivity analysis of the system is also presented. Three examples are used to demonstrate the merits of the design algorithm. The results indicate that the weight of the rotor bearing system can be significantly reduced at the optimum stage.

Author(s):  
Ting Nung Shiau ◽  
Jon Li Hwang

An efficient design algorithm for optimum weight design of a rotor bearing system with dynamic behavior constraints is investigated. The constraints include the restrictions on stresses, unbalance response, and/or critical speeds. The system dynamic behaviors are analyzed by the finite element method. And the exterior penalty function method is used as the optimization technique to minimize the system weight. The system design variables are the cross-sectional areas of the shaft and the stiffnesses of the bearings. The sensitivity analysis of the system parameters is also investigated. The example of a single spool rotor bearing system is employeed to demonstrate the merits of the design algorithm with different combination of dynamic behavior constraints. At the optimum stage, it is shown that the weight of rotor system can be significantly reduced. Moreover, the optimum design weights are quite difference for various combinations of dynamic behavior constraints.


1982 ◽  
Vol 104 (4) ◽  
pp. 831-836 ◽  
Author(s):  
H. A. Du ◽  
S. C. Tang

A design procedure for a car trunk deck-lid using an approximate optimization technique is presented. Selecting the deck-lid gages and deck-lid inner panel configuration as design variables and overall stiffnesses as constraints, a possible weight reduction of 20 percent is demonstrated, compared with the base production deck-lid design. Although other practical design constraints might not allow one to achieve this goal, the potential value of optimization techniques is clearly demonstrated by this study. It is concluded that it could be useful to develop and apply such a procedure to components such as hoods, deck-lids, doors, and fenders, which are isolatable as structural components.


Author(s):  
Zhang Xianmin ◽  
Shen Yunwen ◽  
Liu Hongzhao ◽  
Cao Weiqing

Abstract The paper presents a finite element method for minimum weight design of flexible mechanisms with multiple frequency constraints and upper and lower bound constraints on the design variables. The design algorithm developed in this paper is formulated in terms of the Kuhn-Tucker optimality criterion, in which two damping factors are introduced to guarantee the algorithm possesses good stability and convergence. The first and second order design sensitivity analysies of eigenvalues are presented and the values of the damping factors α and β are recommended. Results of three numerical examples show that the algorithm is stable and the optimal design can be obtained in lsee than fifteen iterations.


Sign in / Sign up

Export Citation Format

Share Document