torsional vibration
Recently Published Documents


TOTAL DOCUMENTS

1807
(FIVE YEARS 316)

H-INDEX

38
(FIVE YEARS 6)

Author(s):  
Ernesto Rocca ◽  
Riccardo Russo

The paper reports a numerical investigation on the dynamic behaviour of a vehicle driveline, equipped with a Torsional Vibration Damper (TVD) based on Magneto-Rheological Elastomeric (MRE) spring elements, during the start-up transient considering an abrupt manoeuvre of clutch engagement. The TVD device consists of a flywheel and a damper disk, with interposed some elastomeric samples which react for relative angular displacements of the two disks. The dynamical parameters of the TVD can be properly tuned by varying the magnetic field surrounding the MRE springs to mitigate the torsional oscillations of the flywheel, causes of many undesired inconveniences as critical speeds or vibro-acoustic issues. The present study promotes the use of the MRE torsional vibration damper to reduce the annoying vibroacoustic phenomenon of “gear rattle” arising in the unloaded gear pairs of the gear box, during and after the rapid clutch engagement transients in the vehicle start-up phase and is conducted on a simplified automotive driveline equipped with a dry clutch. The possibility of quickly tuning the mechanical properties of the MRE-TVD, makes this device particularly eligible for suppressing the above disturbance, adapting to the various operative conditions of the automotive driveline. Results of the analysis, by the help of a Gear Rattle Index (GRI), demonstrate the effectiveness of the proposed device in reducing the vibroacoustic phenomenon during the transient phases of the vehicle start-up, until the vehicles speed conditions are reached.


2021 ◽  
pp. 146808742110689
Author(s):  
Bin Chen ◽  
Yunbo Hu ◽  
Yibin Guo ◽  
Zhijun Shuai ◽  
Chongpei Liu ◽  
...  

The coupling between the crankshaft and the camshaft is neglected before in fault diagnosis which may lead to incomplete fault information. In this paper, a new torsional coupling model of a diesel generator transmission system is proposed for fault diagnosis. The natural frequency and forced torsional vibration response of the model are obtained by the system matrix method and Newmark-β method. For the system without considering the lumped mass of camshafts, some key natural frequencies are lost. The vibration dynamics are compared for the transmission system with and without the new coupling model. And important frequency responses are missed in the spectrums of the forced torsional vibration without the new coupling model. Finally, the new coupling model is implemented in fault diagnosis and the cause of an unusual vibration fault is deduced in the simulation, which confirms the feasibility of the proposed model in fault diagnosis.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8403
Author(s):  
Tomasz Trawiński ◽  
Marcin Szczygieł ◽  
Bartosz Polnik ◽  
Przemysław Deja

This article focuses on the possibility of using an innovative drilling method for the implementation of underground works, especially where there is no physical possibility of using large working machines. Work on a model carried out under the INDIRES project is discussed. A design of a drilling tool equipped with the proposed technology is presented. The solution in question makes it possible to increase the efficiency of the drilling process, which is confirmed by computer simulations. Also, introductory tests of a drilling process supported by torsional vibration generated by an electromagnetic torque generator provided in the KOMAG laboratory facility show the reduction of the drilling time by almost two-fold. In our opinion, adding torsional vibration acting on the plane of a drilled wall that equals natural frequencies of the drilled material represents a promising new technology for drilling. The presented work constitutes the basis for the development of the proposed technology and allows us to conclude that the developed method will be of great interest to manufacturers of drilling machines and devices.


Author(s):  
Thaer M. I. Syam ◽  
Asan G. A. Muthalif

Smart materials properties are altered using external stimuli such as temperature, pressure and magnetic field. Magnetorheological Elastomer (MRE) is a type of smart composite material consisting of a polymer matrix embedded with ferromagnetic particles. In the presence of an external magnetic field, its mechanical properties, such as stiffness, change due to the interaction between the magnetic particles, which have applications in vibration isolation. Unwanted vibration in machines can cause severe damage and machine breakdown. In this work, a semi-active vibration isolator using MRE is proposed for a potential application in a drilling system to isolate the torsional vibration. The MRE was fabricated with a 35% mass fraction (MF) consisted of silicon rubber and iron particles. It was fitted with aluminium couplers and attached to the shaft (drill string) to study its efficiency in vibration isolation under a magnetic field. Two tests were conducted on the drilling prototype setup used in this work; the first test was a hammer impact test. The torsional transfer function TTF analysis showed that the system’s natural frequency has shifted from 13.9 Hz to 17.5 Hz by the influence of increasing magnetic field around the MRE. The results showed that the continuous rotational vibration amplitude of the prototype is attenuated by more than 40%.


2021 ◽  
Author(s):  
Armin Kueck ◽  
Vincent Kulke ◽  
Cord Schepelmann ◽  
Volker Peters ◽  
Georg-Peter Ostermeyer ◽  
...  

Abstract High Frequency Torsional Oscillations (HFTO) generate high torsional loads in the BHA causing cracks, damaged electronics or twist-offs. A new Torsional Vibration Isolator tool (TVI) protects the BHA by restricting vibrations to the tools between bit and TVI. Additional features have been added to the tool to automatically indicate torque overloading of the BHA and to increase torque resistance if required. This paper proves the functionality of the new features analytically, on a small-scale laboratory test and in multiple field deployments in the North Sea. New guidelines for field operations are provided. The new feature is a torsion limiter which automatically engages on reaching a critical torque threshold. The torque is then re-routed through more torque resistant BHA components. The engagement generates a characteristic signal indicating bit or BHA-overloading. The mechanical design of the new feature is presented. A criterion for engagement of the limiter and the signature indicating critical torque are analytically derived. They are experimentally validated on a scaled version of the TVI in a laboratory test. A prototype of the new tool is manufactured and deployed in multiple field operations in the North Sea previously heavily affected by HFTO. Two high-frequency measuring devices identify critical drilling situations on a scale of Milliseconds. A new guideline for utilization of this tool is developed including recommendations for BHA set-up and operational parameters. The TVI works as intended and protects the upper BHA from torsional loads generated by HFTO. The new feature engages at the predicted contact parameters. The signature indicating critical torque for the BHA was recorded and corresponds to the signature measured in the lab and predicted by the model. The TVI is best placed as close to the bit as possible, and a high-frequency measuring device in the BHA is recommended to record and transmit the contact indicators to surface. Based on field tests a parameter map for drilling torque and RPM is created that displays zones of safe operational parameters in a plain manner for field engineers. The map was validated in the field, and harmful drilling states were prevented by following the recommended drilling parameters. The next generation TVI protects BHAs from damage due to torsional vibrations. The new feature enables operations in stuck-pipe situations by increasing the torque when required. The overloading indicator prevents overstepping the torque limit of the bit and the BHA. The new parameter map and best-practice recommendations transport the learnings to the field in an easy-to-use manner.


Sign in / Sign up

Export Citation Format

Share Document