helicopter rotor blades
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
Gunther Wilke

AbstractWithin the DLR project VicToria an aerodynamic and aero-acoustic optimization of helicopter rotor blades is performed. During the optimization, three independent flight conditions are considered: hover, cruise and descent flight. The first two flight conditions drive the power requirements of the helicopter rotor, while the descent flight is the loudest flight condition for current helicopter generations. To drive down the required power and the emitted noise, a multi-objective design approach coupled with surrogate models is utilized to find a Pareto optimal set of rotors. This approach allows to identify the trade-offs to be made when laying emphasis on either goal function. The underlying CFD simulations utilize fourth-order accurate spatial schemes to capture the vortex dominated flow of helicopter rotor blades. The paper presents the validation of the setups, the optimization results and the off-design analysis of a chosen set of blades from the Pareto front. The conclusion is that the utilization of the Pareto front approach is necessary to find good rotor designs, while the utilization of high-order methods allows for efficient CFD setups.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 178
Author(s):  
Yongming Yao ◽  
Xupeng Bai ◽  
Huiying Liu ◽  
Tianyu Li ◽  
Jianbo Liu ◽  
...  

Rotor blades play an important role in unmanned helicopters, and it is of great significance to study the erosion of rotor blades. In this study, titanium alloy (Ti-4Al-1.5Mn) was used as the helicopter rotor blades’ surface material. The commercial software Ansys-Fluent 18.0 was mainly used to study the erosion of solid particles on the helicopter rotor blades. The moving mesh method and the discrete phase method (DPM) were used to construct an erosion model of the blades at different speeds (500, 1000, or 2000 rpm), and at different particle mass flow rates (0.5, 1, or 1.5 kg/s). The results show that the erosion of helicopter blades is mainly observed at the leading edge and at the tip of the blades. At different particle mass flow rates, greater particle mass flow rates lead to greater DPM erosion rates. As the blade speed increases, the maximum DPM erosion rate decreases, but the severely eroded area increases. Finally, the values of the severely eroded area of the helicopter rotor blades and the ratios of the severely eroded area growth are obtained through the image processing method.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chenglin Zuo ◽  
Chunhua Wei ◽  
Jun Ma ◽  
Tingrui Yue ◽  
Lei Liu ◽  
...  

This study presents a stereophotogrammetry approach to achieve full-field displacement measurements of helicopter rotor blades. The method is demonstrated in the wind tunnel test of a 2 m diameter rotor, conducted at the 5.5   m × 4   m Aeroacoustic Wind Tunnel of China Aerodynamics Research and Development Center (CARDC). By arranging the retroreflective targets on the special hat installed directly above the rotor hub, the dynamic motion of the rotor shaft was tracked accurately, and a unified coordinate system was established on the rotor. Therefore, three-dimensional coordinates of instantaneously measured targets attached on the blade could be transformed to the unified rotor coordinate system, thereby providing a basis for consistently calculating the blade displacements at different test conditions. Moreover, location deviations of the blade caused by the vibration of the measuring system or the rotor due to freestream and rotor rotation were also effectively corrected through coordinate transformation. Comparisons of experimental and simulation results for a range of hover and forward flight conditions show good magnitude and trend agreements.


Author(s):  
Rohin K. Majeti ◽  
Berend G. van der Wall ◽  
Christoph G. Balzarek

Abstract A new morphing concept called linearly variable chord extension was studied for its effectiveness in improving the efficiency of a helicopter rotor. Apart from chord extension itself, an additional feature which is deflection of the extended part of the chord resulting in an effective camber and additional twist to the airfoil, is also studied for its effect on rotor efficiency improvement. Trim analyses were carried out for various chord-extended rotors for hover as well as various forward flight velocities using DLR’s in-house comprehensive analysis code S4. Chord extension of up to 100% and chord-extension–deflection of up to 15° were considered. Results show that the linearly variable chord-extension concept is effective in reducing power requirement in both hover and forward flight. Deflection of the extended chord also helps reduce power requirement in hover, especially at higher blade loadings. However, the root torsional moments and hence, the pitch-link loads are seen to increase substantially for the morphed rotors.


2020 ◽  
Vol 10 (3) ◽  
pp. 977 ◽  
Author(s):  
Xupeng Bai ◽  
Yongming Yao ◽  
Zhiwu Han ◽  
Junqiu Zhang ◽  
Shuaijun Zhang

In this study, titanium alloy (Ti-4Al-1.5Mn), magnesium alloy (Mg-Li9-A3-Zn3), or aluminum alloy (Al7075-T6) were used to construct the shell model of helicopter rotor blade to study the solid particle erosion of helicopter rotor blades. The erosion resistance of the three materials at different angles of attack (6°, 3°, or 0°) and particle collision speeds (70, 150, or 220 m/s) was examined using the finite volume method, the discrete phase method, and erosion models. In addition, the leading edge of the helicopter blades was coated with two types of bionic anti-erosion coating layers (V- and VC-type), in an attempt to improve erosion resistance at the angles of attack and particle collision speeds given above. The results showed that Ti-4Al-1.5Mn had the best erosion resistance at high speed, followed by Al7075-T6 and Mg-Li9-A3-Zn3. The angle of attack appeared to affect only the surface area of the blade erosion, while the erosion rate was not affected. Finally, the results of this article showed that the V-type bionic coating had better erosion resistance than the VC-type coating at the same impact speeds. The angle of attack did not have a significant effect on the erosion rate of the bionic coating.


Sign in / Sign up

Export Citation Format

Share Document