Leading Edge Effects in Transient Natural Convection Flow adjacent to a Vertical Surface

1978 ◽  
Vol 100 (4) ◽  
pp. 731-733 ◽  
Author(s):  
R. L. Mahajan ◽  
B. Gebhart
2015 ◽  
Vol 52 (6) ◽  
pp. 1193-1202 ◽  
Author(s):  
Sadia Siddiqa ◽  
Md. Anwar Hossain ◽  
Rama Subba Reddy Gorla

1989 ◽  
Vol 111 (2) ◽  
pp. 378-384 ◽  
Author(s):  
A. K. Kulkarni ◽  
S. L. Chou

This paper presents a comprehensive mathematical model and numerical solutions for a natural convection flow over an isothermal, heated, vertical wall immersed in an ambient atmosphere that is thermally stratified. The model assumes a laminar flow near the leading edge, which then becomes a transitional flow, and finally becomes fully turbulent away from the leading edge. Effects of several typical cases of ambient stratification on heat transfer to the wall, peak velocity, and temperature are examined. It is found that the velocity field is affected more significantly by the “memory” of upstream ambient conditions than the temperature field.


Author(s):  
R S R Gorla ◽  
M A Hossain

In the present paper, the natural convection flow of an Ostwalde—de Waele type power-law non-Newtonian fluid past a uniformly heated vertical slotted surface has been investigated numerically. The equations governing the flow and heat transfer are reduced to local non-similarity form. The transformed boundary-layer equations are solved numerically using implicit finite-difference method for values of ξ in the interval [0, ∞]. Solutions for heat transfer rate obtained for the rigid surface compared well with those documented in the published literature. From the present analysis, it is observed that an increase in ξ leads to increasing the skin-friction as well as reduction in heat transfer at the surface. As the power-law index n increases, the friction factor as well as the surface heat transfer increases.


Author(s):  
Basant K Jha ◽  
Michael O Oni

This paper investigates the impact of asymmetric heating or cooling of cylinder surfaces on transient natural convection flow in between vertical concentric cylinders. The outer surface of inner cylinder is assumed to be heated with temperature greater than the cooled inner surface of the outer cylinder. Closed form expressions are obtained by using the well-known Laplace transform technique to solve the governing partial differential equations in Laplace domain, whereas the Riemann-sum approximation is used to invert to time domain. Results show that the role of buoyancy force distribution parameter is to increase temperature, velocity, skin-friction and volume flow rate for both air and water. Further, reverse flow formation can be controlled by using suitable buoyancy force distribution parameter.


Sign in / Sign up

Export Citation Format

Share Document