Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures

1967 ◽  
Vol 89 (3) ◽  
pp. 459-463 ◽  
Author(s):  
R. G. Forman ◽  
V. E. Kearney ◽  
R. M. Engle

An improved theory is proposed for the crack-growth analysis of cyclic-loaded structures. The theory assumes that the crack tip stress-intensity-factor range, ΔK, is the controlling variable for analyzing crack-extension rates. The new theory, however, takes into account the load ratio, R, and the instability when the stress-intensity factor approaches the fracture toughness of the material, Kc. Excellent correlation is found between the theory and extensive experimental data. A computer program has been developed using the new theory to analyze the crack propagation and time to failure for cyclic-loaded structures.

2003 ◽  
Vol 125 (3) ◽  
pp. 293-298 ◽  
Author(s):  
Eric Petitpas ◽  
B. Campion

The thermo-mechanical effects of firing induce very considerable stresses on the internal surface of the gun barrels. Consequently, micro-cracks appear very soon in the life of the tube. So it is important to control the propagation of these cracks. For more than 10 years, modeling has been used by Giat-Industries to understand and to control this phenomenon. This paper focuses on the study of short crack propagation kinetics during firings. Two-dimensional modeling taking into consideration the residual stresses from a hydraulic autofrettage and the thermo-mechanical stresses due to the successive firings is presented. The cyclic plastic behavior of the material is taken into consideration. This makes it possible to observe the effect of loss of the residual stresses at the surface due to the firings. Cracks of increasing length are introduced in the model to calculate the stress intensity factor. An innovative point is the modeling of the contact between the crack lips in order to take into account the effect of crack closing during cooling. Indeed the effective stress intensity factor range is calculated using this model for numerous crack lengths. A classic Paris law is then used to predict the crack propagation kinetics. Sensitivity analysis has been carried out using this model; in particular, the effect of autofrettage on crack propagation is analyzed as well as the effect of the use of lower-strength steels.


2011 ◽  
Vol 83 ◽  
pp. 28-34
Author(s):  
Keisuke Tanaka ◽  
Yasuki Kita

A sharply notched specimen of porous silicon carbide with porosity of 37% was fatigued under four-point bending. The opening displacement of a fatigue crack was measured at several positions along cracks by using scanning electron microscopy. The crack propagation curve was divided into stages I, II, and III. The crack propagation rate first decreased with crack extension in stage I and became constant in stage II. In stage III, the crack propagation rate increased again. The range of crack opening displacement measured in SEM was lower than that calculated from the applied load range by FEM, suggesting that the anomalous variation of the crack propagation rate with crack extension was caused by crack-tip shielding due to crack face contact. The crack-tip stress intensity factor was estimated as a true crack driving force from the relation between the crack opening displacement and the applied load. The amount of crack-tip shielding increased very quickly with crack extension, reducing the crack-tip stress intensity factor in stage I. In stage II, the increasing applied stress intensity factor is balanced by the increase in the crack-tip shielding. The crack-tip stress intensity factor increases with crack extension in stage III.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 977
Author(s):  
Sanjin Krscanski ◽  
Josip Brnic

This paper considers the applicability of virtual crack closure technique (VCCT) for calculation of stress intensity factor range for crack propagation in standard metal specimen geometries with sharp through thickness cracks. To determine crack propagation rate and fatigue lifetime of a dynamically loaded metallic specimen, in addition to VCCT, standard Forman model was used. Values of stress intensity factor (SIF) ranges ΔK for various crack lengths were calculated by VCCT and used in conjunction with material parameters available from several research papers. VCCT was chosen as a method of choice for the calculation of stress intensity factor of a crack as it is simple and relatively straightforward to implement. It is relatively easy for implementation on top of any finite element (FE) code and it does not require the use of any special finite elements. It is usually utilized for fracture analysis of brittle materials when plastic dissipation is negligible, i.e., plastic dissipation belongs to small-scale yielding due to low load on a structural element. Obtained results showed that the application of VCCT yields good results. Results for crack propagation rate and total lifetime for three test cases were compared to available experimental data and showed satisfactory correlation.


Sign in / Sign up

Export Citation Format

Share Document