stress intensity factor range
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 5 (4) ◽  
pp. 84-88
Author(s):  
Michael Horvath ◽  
Matthias Oberreiter ◽  
Michael Stoschka ◽  
Martin Leitner

In components, crack propagation is subjected to crack-closure-mechanisms which affect the build-up of the relevant threshold stress intensity factor range during cyclic loading. As structural parts are exposed to service loads incorporating a variety of load ratios, a significant change of the long-crack threshold value occurs, leading to a severe stress ratio dependency of crack-closure-mechanisms. Thus, an extensive number of crack propagation experiments is required to gain statistically proven fracture mechanical parameters describing the build-up of closure effects as crack growth resistance curves.The article presents a generalized dataset to assess the formation of crack-closure-mechanisms of cast steel G21Mn5+N. Numerous crack propagation experiments utilizing single edge notched bending (SENB) sample geometries are conducted, incorporating alternate to tumescent stress ratios. The statistically derived, generalized crack growth resistance curve features the impact of closure effects on the crack propagation rate in a uniform manner. To extend the dataset to arbitrary load ratios, the long-crack threshold approach according to Newman is invoked. The generalized dataset for the cast steel G21Mn5+N is validated by analytical fracture mechanical calculations for the utilized SENB-sample geometries. Incorporating a modified NASGRO equation, a sound correlation of analytical and experimental crack propagation rates is observed. Moreover, the derived master crack propagation resistance curve is implemented as a user-defined script into a numerical crack growth calculation tool and supports a local, node--based numerical crack propagation study as demonstrated for a representative SENB-sample. Concluding, the derived dataset facilitates the calculation of fatigue life of crack-affected cast steel components subjected to arbitrary stress ratios.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1183
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Diogo M. Neto ◽  
Micael F. Borges

The fatigue crack growth (FCG) process is usually accessed through the stress intensity factor range, ΔK, which has some limitations. The cumulative plastic strain at the crack tip has provided results in good agreement with the experimental observations. Also, it allows understanding the crack tip phenomena leading to FCG. Plastic deformation inevitably leads to micro-porosity occurrence and damage accumulation, which can be evaluated with a damage model, such as Gurson–Tvergaard–Needleman (GTN). This study aims to access the influence of the GTN parameters, related to growth and nucleation of micro-voids, on the predicted crack growth rate. The results show the connection between the porosity values and the crack closure level. Although the effect of the porosity on the plastic strain, the predicted effect of the initial porosity on the predicted crack growth rate is small. The sensitivity analysis identified the nucleation amplitude and Tvergaard’s loss of strength parameter as the main factors, whose variation leads to larger changes in the crack growth rate.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1764
Author(s):  
Jaroslaw Galkiewicz ◽  
Urszula Janus-Galkiewicz

The paper presents the influence of in-plane constraints defined by T-stress on the behavior of a crack subjected to cyclic loading. In the analysis, a modified boundary layer model approach was used in which the cohesive model was introduced. In the simulations, the constant maximum value of the stress intensity factor and four levels of T-stress were defined. The model was subjected to ten repeated stress cycles. Based on the results obtained, an analysis of the effect of the in-plane constraint on selected aspects of crack behavior was made. The strong influence of in-plane constraint applied in the model on the crack closure and the fatigue crack growth rate was proven. Since the in-plane constraint described the influence of geometry on the stress field surrounding the fatigue crack tip in real geometry, the results suggested that it is possible to create precise formulae connecting the level of the in-plane constraint with the effective stress intensity factor range and to incorporate the T-stress or Q-stress level in the Paris law.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 664
Author(s):  
Kenichi Masuda ◽  
Sotomi Ishihara ◽  
Noriyasu Oguma

Fatigue crack growth experiments are performed using A7075-T6 compact tension (CT) specimens with various thicknesses t (1–21 mm). The stress intensity factor at the crack opening level Kop is measured, and the effects of t and the stress intensity factor range ΔK on Kop are investigated. In addition, the change in Kop value due to specimen surface removal is investigated. Furthermore, we clarify that the radius of curvature of the leading edge of the fatigue crack decreases as t becomes thinner. Using the three-dimensional elastoplastic finite element method, the amount of plastic lateral contraction (depression depth d) at the crack tip after fatigue loading is calculated quantitatively. The following main experimental results are obtained: In the region where ΔK is 5 MPam1/2 or higher, the rate of fatigue crack growth da/dN at a constant ΔK value increases as t increases from 1 to 11 mm. The da/dN between t = 11 and 21 mm is the same. Meanwhile, in the region where ΔK is less than 5 MPam1/2, the effect of t on da/dN is not observed. The effects of t and ΔK on the da/dN–ΔK relationship are considered physically and quantitatively based on d.


2020 ◽  
Vol 28 (4) ◽  
pp. 365-381
Author(s):  
Lang Zou ◽  
Dongfang Zeng ◽  
Yabo Li ◽  
Kai Yang ◽  
Liantao Lu ◽  
...  

AbstractThis study investigated the fretting wear and fatigue of full-scale railway axles. Fatigue tests were conducted on full-scale railway axles, and the fretting wear and fretting fatigue in the fretted zone of the railway axles were analysed. Three-dimensional finite element models were established based on the experimental results. Then, multi-axial fatigue parameters and a linear elastic fracture mechanics-based approach were used to investigate the fretting fatigue crack initiation and propagation, respectively, in which the role of the fretting wear was taken into account. The experimental and simulated results showed that the fretted zone could be divided into zones I–III according to the surface damage morphologies. Fretting wear alleviated the stress concentration near the wheel seat edge and resulted in a new stress concentration near the worn/unworn boundary in zone II, which greatly promoted the fretting crack initiation at the inner side of the fretted zone. Meanwhile, the stress concentration also increased the equivalent stress intensity factor range ΔKeq below the mating surface, and thus promoted the propagation of fretting fatigue crack. Based on these findings, the effect of the stress redistribution resulting from fretting wear is suggested to be taken into account when evaluating the fretting fatigue in railway axles.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4418
Author(s):  
Minqing Wang ◽  
Jinhui Du ◽  
Qun Deng

In this study, we examine the mechanism of fatigue-crack propagation in 718Plus superalloy at 704 °C under fatigue–creep–environment interactions, in this case, a new turbine disc material used in aero-engines at high temperatures. The effect of creep on the fatigue-crack propagation of the superalloy at high temperature was also researched. There was an unusual inhibitory effect on the propagation of fatigue cracks in 718Plus alloy, in which the propagation rate of fatigue cracks decreased with the increase of creep time through exploration of dwell-fatigue-crack growth (DFCG) test with different creep times. In particular, under lower stress intensity factor range (ΔK) conditions, the fatigue-crack growth rate with a 90 s hold-time was one order of magnitude lower than that with a 5 s hold-time. Conversely, the gap between the two DFCGs gradually decreased with the increase of ΔK and the creep effect became less apparent. The mechanism of crack propagation in 718Plus alloy under two creep conditions was investigated from a viewpoint of the microstructure, oxidation rate at high temperature and crack path morphology under different conditions.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 977
Author(s):  
Sanjin Krscanski ◽  
Josip Brnic

This paper considers the applicability of virtual crack closure technique (VCCT) for calculation of stress intensity factor range for crack propagation in standard metal specimen geometries with sharp through thickness cracks. To determine crack propagation rate and fatigue lifetime of a dynamically loaded metallic specimen, in addition to VCCT, standard Forman model was used. Values of stress intensity factor (SIF) ranges ΔK for various crack lengths were calculated by VCCT and used in conjunction with material parameters available from several research papers. VCCT was chosen as a method of choice for the calculation of stress intensity factor of a crack as it is simple and relatively straightforward to implement. It is relatively easy for implementation on top of any finite element (FE) code and it does not require the use of any special finite elements. It is usually utilized for fracture analysis of brittle materials when plastic dissipation is negligible, i.e., plastic dissipation belongs to small-scale yielding due to low load on a structural element. Obtained results showed that the application of VCCT yields good results. Results for crack propagation rate and total lifetime for three test cases were compared to available experimental data and showed satisfactory correlation.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Kisaburo Azuma ◽  
Shinjiro Hidaka ◽  
Yasuhiro Yamazaki

Abstract Low-alloy steels are extensively used in pressure boundary components of nuclear power plants. The structural integrity of the components made of low-alloy steels can be evaluated by the flaw evaluation procedure provided by Section XI of the ASME Boiler and Pressure Vessel Code. According to the Code, the stress intensity factor range ΔK can be used to determine the fatigue crack growth rates of the material. However, it has been reported that the fatigue crack growth rate under severe reversing loads is also strongly influenced by crack closure behavior. This paper discusses the relation between applied stresses and the fatigue crack growth rate for cracks in low-alloy steels exposed to air. Compressive-tensile cyclic loadings are applied to center-notched plates to obtain the fatigue crack growth curves. The test data demonstrate that effective stress intensity factor range predicted by our closure model described the crack growth property more accurately. A comparison among crack closure models indicates that our crack closure model is suitable to predict the crack growth rates when low constraint conditions are assumed at the crack tip due to severe reversing loads.


Sign in / Sign up

Export Citation Format

Share Document