Observer-Based H∞ Feedback Control for Arbitrarily Time-Varying Discrete-Time Systems With Intermittent Measurements and Input Constraints

Author(s):  
Hui Zhang ◽  
Yang Shi

In this paper, we investigate the observer-based H∞ feedback control problem for discrete-time systems subject intermittent measurements and constrained control inputs. To characterize the practical scenario of the intermittent measurement phenomenon, we model it using a stochastic Bernoulli approach. We assume that the control action is constrained to be below a prescribed level. Sufficient conditions are obtained for the observer-based H∞ feedback control problem. The estimator and the controller are derived by solving a linear matrix inequality (LMI)-based optimization problem. Moreover, the proposed method is extended to systems with arbitrarily time-varying parameters within a polytope with unknown vertices. Three examples are given to illustrate the effectiveness and efficacy of the proposed method.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Priyanka Kokil ◽  
V. Krishna Rao Kandanvli ◽  
Haranath Kar

This paper is concerned with the problem of global asymptotic stability of linear discrete-time systems with interval-like time-varying delay in the state. By utilizing the concept of delay partitioning, a new linear-matrix-inequality-(LMI-) based criterion for the global asymptotic stability of such systems is proposed. The proposed criterion does not involve any free weighting matrices but depends on both the size of delay and partition size. The developed approach is extended to address the problem of global asymptotic stability of state-delayed discrete-time systems with norm-bounded uncertainties. The proposed results are compared with several existing results.


Algorithms ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 20 ◽  
Author(s):  
Yong-Hong Lan ◽  
Jun-Jun Xia ◽  
Yue-Xiang Shi

In this paper, a robust guaranteed-cost preview repetitive controller is proposed for a class of polytopic uncertain discrete-time systems. In order to improve the tracking performance, a repetitive controller, combined with preview compensator, is inserted in the forward channel. By using the L-order forward difference operator, an augmented dynamic system is constructed. Then, the guaranteed-cost preview repetitive control problem is transformed into a guaranteed-cost control problem for the augmented dynamic system. For a given performance index, the sufficient condition of asymptotic stability for the closed-loop system is derived by using a parameter-dependent Lyapunov function method and linear matrix inequality (LMI) techniques. Incorporating the controller obtained into the original system, the guaranteed-cost preview repetitive controller is derived. A numerical example is also included, to show the effectiveness of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Narongsak Yotha ◽  
Kanit Mukdasai

This paper investigates the problem of robust stability for linear parameter-dependent (LPD) discrete-time systems with interval time-varying delays. Based on the combination of model transformation, utilization of zero equation, and parameter-dependent Lyapunov-Krasovskii functional, new delay-dependent robust stability conditions are obtained and formulated in terms of linear matrix inequalities (LMIs). Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.


2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Valter J. S. Leite ◽  
Márcio F. Miranda

Sufficient linear matrix inequality (LMI) conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.


Sign in / Sign up

Export Citation Format

Share Document