scholarly journals New Delay-Dependent Robust Stability Criterion for LPD Discrete-Time Systems with Interval Time-Varying Delays

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Narongsak Yotha ◽  
Kanit Mukdasai

This paper investigates the problem of robust stability for linear parameter-dependent (LPD) discrete-time systems with interval time-varying delays. Based on the combination of model transformation, utilization of zero equation, and parameter-dependent Lyapunov-Krasovskii functional, new delay-dependent robust stability conditions are obtained and formulated in terms of linear matrix inequalities (LMIs). Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.

2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Valter J. S. Leite ◽  
Márcio F. Miranda

Sufficient linear matrix inequality (LMI) conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.


2009 ◽  
Vol 2009 ◽  
pp. 1-24 ◽  
Author(s):  
Guangdeng Zong ◽  
Linlin Hou ◽  
Hongyong Yang

This paper addresses the problem ofH∞control for uncertain discrete-time systems with time-varying delays. The system under consideration is subject to time-varying norm-bounded parameter uncertainties in both the state and controlled output. Attention is focused on the design of a memoryless state feedback controller, which guarantees that the resulting closed-loop system is asymptotically stable and reduces the effect of the disturbance input on the controlled output to a prescribed level irrespective of all the admissible uncertainties. By introducing some slack matrix variables, new delay-dependent conditions are presented in terms of linear matrix inequalities (LMIs). Numerical examples are provided to show the reduced conservatism and lower computational burden than the previous results.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Kaifan Ma ◽  
Zhangang Wang ◽  
Fengdong Shi ◽  
Liankun Sun

This article is committed to H∞ filtering for linear discrete-time systems with time-varying delay. The novelty of the paper comes from the consideration of the new Wirtinger-based inequality with double accumulation terms and the idea of delay-partitioning, which guarantees a better asymptotic stability and is less conservative than the celebrated free-weighting matrix or Jensen’s inequality methods. In combination with the improved Wirtinger-based inequality to handle the modified Lyapunov-Krasovskii (L-K) functionals, a new delay-dependent bound real lemma (BRL) is gained. In the light of the derived H∞ performance analysis results, the H∞ filter will be designed in response to linear matrix inequality (LMI). The validness of the proposed methods will be expressed via some numerical examples by the comparison of existing results.


2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
A. Hmamed ◽  
M. Alfidi ◽  
A. Benzaouia ◽  
F. Tadeo

Robust stability conditions are derived for uncertain 2D linear discrete-time systems, described by Fornasini-Marchesini second models with polytopic uncertainty. Robust stability is guaranteed by the existence of a parameter-dependent Lyapunov function obtained from the feasibility of a set of linear matrix inequalities, formulated at the vertices of the uncertainty polytope. Several examples are presented to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document