Film Cooling on Highly Loaded Blades With Main Flow Separation—Part I: Heat Transfer

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

Film cooling experiments were run at the high speed cascade wind tunnel of the University of the Federal Armed Forces Munich. The investigations were carried out with a linear cascade of highly loaded turbine blades. The main objectives of the tests were to assess the film cooling effectiveness and the heat transfer in zones with main flow separation. Therefore, the blades were designed to force the flow to detach on the pressure side shortly downstream of the leading edge and reattach at about half of the axial chord. In this zone, film cooling rows are placed among others for a reduction of the size of the separation bubble. The analyzed region on the blade is critical due to the high heat transfer present at the leading edge and at the reattachment line after the main flow separation. Film cooling can contribute to a reduction of the size of the separation bubble reducing aerodynamic losses, however, in general, it increases heat transfer due to turbulent mixing. The reduction of the size of the separation bubble might also be twofold, since it acts like a thermal insulator on the blade and reducing the size of the bubble might lead to a stronger heating of the blade. Film cooling should, therefore, take both into account: first, a proper protection of the surface and second, reducing aerodynamic losses, diminishing the extension of the main flow separation. While experimental results of the adiabatic film cooling effectiveness were shown in previous publications, the local heat transfer is analyzed in this paper. Emphasis is also placed upon analyzing, in detail, the flow separation process. Furthermore, the tests comprise the analysis of the effect of different outlet Mach and Reynolds numbers and film cooling. In part two of this paper, the overall film cooling effectiveness is addressed. Local heat transfer is still difficult to predict with modern numerical tools and this is especially true for complex flows with flow separation. Some numerical results with the Reynolds averaged Navier-Stokes (RANS) and large eddy simulation (LES) show the capability of a commercial solver in predicting the heat transfer.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

Film cooling experiments were run at the high speed cascade wind tunnel of the University of the Federal Armed Forces Munich. The investigations were carried out with a linear cascade of highly loaded turbine blades. The main targets of the tests were to assess the film cooling effectiveness and the heat transfer in zones with main flow separation. Therefore the blades were designed to force the flow to detach on the pressure side shortly downstream of the leading edge and it reattaches at about half of the axial chord. In this zone, film cooling rows are placed among others for reduction of the size of the separation bubble. The analyzed region on the blade is critical due to the high heat transfer present at the leading edge and at the reattachment line after main flow separation. Film cooling can contribute to a reduction of the size of the separation bubble reducing aerodynamic losses but increases in general heat transfer due to turbulent mixing. The reduction of the size of the separation bubble might also be two-fold since it acts like a thermal insulator on the blade and reducing the size of the bubble might lead to stronger heating of the blade. Film cooling should therefore take into account both: firstly, a proper protection of the surface, and secondly, reduce aerodynamic losses diminishing the extension of the main flow separation. The overall effectiveness of film cooling for a real engine has to combine heat transfer with film cooling effect. In this paper, the overall effectiveness of film cooling, combining results from measurements of the adiabatic film cooling effectiveness and the local heat transfer coefficient are shown. The tests comprise the analysis of the effect of different outlet Mach and Reynolds numbers at engine relevant values and film cooling ratio. A new parameter is introduced which allows for the evaluation of the effect of film cooling accounting at the same time for the change of local heat transfer coefficient. To the authors’ opinion this parameter allows a better, physically based assessment than the strategy using the so-called heat flux ratio. A parameter study is carried out in order to benchmark the effect of changes of the blade design.


Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

Film cooling experiments were run at the high speed cascade wind tunnel of the University of the Federal Armed Forces Munich. The investigations were carried out with a linear cascade of highly loaded turbine blades. The main targets of the tests were to assess the film cooling effectiveness and the heat transfer in zones with main flow separation. Therefore the blades were designed to force the flow to detach on the pressure side shortly downstream of the leading edge and it reattaches at about half of the axial chord. In this zone film cooling rows are placed among others for reduction of the size of the separation bubble. The analyzed region on the blade is critical due to the high heat transfer present at the leading edge and at the reattachment line after main flow separation. Film cooling can contribute to a reduction of the size of the separation bubble reducing aerodynamic losses but increases in general heat transfer due to turbulent mixing. The reduction of the size of the separation bubble might also be twofold since it acts like a thermal insulator on the blade and reducing the size of the bubble might lead to stronger heating of the blade. Film cooling should therefore take into account both: firstly a proper protection of the surface and secondly reduce aerodynamic losses diminishing the extension of the main flow separation. While experimental results of the adiabatic film cooling effectiveness were shown in previous publications, the local heat transfer is analyzed in this paper. Emphasis is also put in analyzing in detail the flow separation process. The tests comprise furthermore the analysis of the effect of different outlet Mach and Reynolds numbers and film cooling. In part two of this paper the overall film cooling effectiveness is addressed. Local heat transfer is still difficult to predict with modern numerical tools and this is especially true for complex flows with flow separation. Some numerical results with RANS and LES show the capability of a commercial solver in predicting the heat transfer.


Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

Film cooling experiments were run at the high speed cascade wind tunnel of the University of the Federal Armed Forces Munich. The investigations were carried out with a linear cascade of highly loaded turbine blades. The main targets of the tests were to assess the film cooling effectiveness and the heat transfer in zones with main flow separation. Therefore the blades were designed to force the flow to detach on the pressure side shortly downstream of the leading edge and it reattaches at about half of the axial chord. In this zone film cooling rows are placed among others for reduction of the size of the separation bubble. The analyzed region on the blade is critical due to the high heat transfer present at the leading edge and at the reattachment line after main flow separation. Film cooling can contribute to a reduction of the size of the separation bubble reducing aerodynamic losses but increases in general heat transfer due to turbulent mixing. The reduction of the size of the separation bubble might also be twofold since it acts like a thermal insulator on the blade and reducing the size of the bubble might lead to stronger heating of the blade. Film cooling should therefore take into account both: firstly a proper protection of the surface and secondly reduce aerodynamic losses diminishing the extension of the main flow separation. The overall effectiveness of film cooling for a real engine has to combine heat transfer with film cooling effect. In this paper the overall effectiveness of film cooling, combining results from measurements of the adiabatic film cooling effectiveness and the local heat transfer coefficient are shown. The tests comprise the analysis of the effect of different outlet Mach and Reynolds numbers at engine relevant values and film cooling ratio. A new parameter is introduced which allows to evaluate the effect of film cooling accounting at the same time for the change of local heat transfer coefficient. To the authors’ opinion this parameter allows a better, physically based assessment than the strategy using the so-called heat flux ratio. A parameter study is carried out in order to benchmark the effect of changes of the blade design.


Author(s):  
Douglas N. Barlow ◽  
Yong W. Kim

An experimental investigation of film cooling on rough surfaces has been accomplished at a Reynolds number and dimensionless boundary layer momentum thickness found in current high performance first stage turbine vanes. A transient experimental method using thermochromic liquid crystals is employed to determine both local heat transfer coefficients and film cooling effectiveness values on planar rough surfaces. Two surface roughness configurations are investigated with a single row of cooling holes spaced three diameters apart and inclined 30° to the mainstream flow. The mainstream turbulence level at the point of film injection is 8.5% and the density ratio considered is approximately 1.0. The influence of roughness on the centerline film cooling effectiveness, laterally averaged film cooling effectiveness, laterally averaged heat transfer coefficients, as well as area averaged values are presented. It is found that the presence of roughness causes a decrease in the film cooling effectiveness over that of the smooth surface for the range of experimental parameters considered in this study. In addition, significant lateral smoothing in film cooling effectiveness distribution is observed for the rougher surfaces. Measured heat transfer coefficients on rough surfaces show a trend of monotonic increase with blowing ratio. However, such increase is not as great as that for the case of smooth surface.


Author(s):  
Yong W. Kim ◽  
Chad Coon ◽  
Hee-Koo Moon

Pressure-side discharge is commonly employed in turbine blades and nozzle guide vanes to keep the trailing edge metal temperatures within an allowable limit while minimizing aerodynamic penalties. Despite its widespread use, film-cooling data of the discharge slot are scarce in open literature. The objectives of the present experimental study were to measure detailed local heat transfer and film-cooling effectiveness from a 10x scale trailing-edge model of an industrial gas turbine airfoil in a low speed wind tunnel. To simulate the mainstream flow acceleration in vane and blade row passages, a linear velocity gradient was imposed using an adjustable top wall. The present work employed the composite slab quasi-steady liquid crystal method that allows measurements of local heat transfer coefficients and film-cooling effectiveness from two related tests. With this technique, the heat transfer measurement can be performed in a cold wind tunnel. The coolant-to-mainstream blowing ratio was varied between 0.25 and 1.0. The slot hydraulic diameter based Reynolds number ranged from 4,760 to 19,550. The coolant-to-mainstream density ratio was fixed at 0.95. Slot discharge coefficients were also measured with mainstream acceleration. Both local heat transfer coefficients and film-cooling effectiveness displayed a strong dependency on blowing ratio and mainstream acceleration. However, the discharge coefficients showed little dependency on the mainstream acceleration.


Author(s):  
Chao-Cheng Shiau ◽  
Nafiz H. K. Chowdhury ◽  
Shang-Feng Yang ◽  
Je-Chin Han ◽  
Alexander MirzaMoghadam ◽  
...  

This paper experimentally studies the effect of transonic flow on local heat transfer coefficients and film cooling effectiveness distributions of a turbine vane’s suction surface with compound-angle shaped-hole configuration. A Temperature Sensitive Paint (TSP) method is used to determine the local heat transfer coefficients and film cooling effectiveness simultaneously. Tests were performed in a five-vane annular-sector cascade blow-down facility. The exit Mach numbers are controlled to be 0.7 and 0.9, from subsonic to transonic conditions. Compressed air is used as coolant with a coolant-to-mainstream density ratio 0.91 on film cooling and heat transfer study. Three averaged coolant-to-mainstream blowing ratios in the range, 0.7, 1.0, and 1.6 are investigated. The test vane features three rows of radial-angle cylindrical holes around the leading edge, and two rows of compound-angle shaped holes on the suction side. Effects of blowing ratio and exit Mach number on the vane suction surface heat transfer and film cooling effectiveness distributions are obtained, and the results are presented and explained in this investigation.


Author(s):  
Wei Shi ◽  
Xueying Li ◽  
Lang Wang ◽  
Jing Ren ◽  
Hongde Jiang

Abstract Additive Manufacturing (AM) is a process for making complex parts that were once difficult to machine using traditional manufacturing processes such as forging, casting, and welding. As a new and promising processing technology, AM is being increasingly applied to the manufacturing of high temperature turbine parts. However, before the widespread application of AM can become feasible, the influence of such processes on the performance of turbine hot ends — especially during the film cooling flow heat transfer — requires further study. This paper focuses a large eddy simulation study done in order to understand the physical phenomena involved in the random roughness caused by the AM of fan-shaped film holes. This paper proposes a set of workflows to connect the AM, CFD simulation, Computed Tomography (CT) and reverse modeling, so that the effect of AM on the flow and heat transfer of film cooling can be studied. The results of this preliminary workflow reveal several observations. First, that the film cooling effectiveness (η) of AM fan-shaped holes decreases. The area averaged η of the ideal hole is 0.32, while the area averaged cooling effectiveness of the AM hole is 0.29. As such, the η of the AM fan-shaped hole has a significant bifurcation phenomenon. This is because the separation bubble in-tube moves forward, and blocks the flow channel, which bifrucates the flow in-tube. Second, a pressure gradient towards the trailing edge generated at a random rough surface near the leading edge squeezes the fluid. The combined effect of these two mechanisms causes the fluid to flow out of the air film pores mainly from the leading edge with a smaller lateral expansion.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Mingfei Li ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

The cooling system is required to ensure gas turbine can work at high temperature, which has exceeded the material limitation. An endwall cooling test rig was built up to conduct the endwall cooling research. A detailed work was done for analyzing characteristics of endwall heat transfer and discussing the multi-parameter influence mechanism of overall cooling effectiveness. The main flow side heat transfer coefficient, adiabatic film cooling effectiveness and overall cooling effectiveness were measured in the experiments. The effects of coolant mass flowrate ratio (MFR) were considered through the measurement. In order to analyze how each of the parameters works on overall cooling effectiveness, a one-dimensional correlation was developed. The results showed that obvious enhancement could be found in cooling effectiveness by increasing coolant MFR, and the film jet can be easily attached to the surface after the acceleration of the main flow in the nozzle channel. Comparing with film cooling effectiveness, overall cooling effectiveness distribution is more uniform, which is due to the influence of internal cooling. The verified one-dimensional analysis method showed that the improvement in film cooling would be most efficient to heighten overall cooling effectiveness. The improvement in film cooling would be more efficient when film cooling effectiveness is in high level than in low level. However, the enhancement of internal heat transfer is more efficient when internal heat transfer coefficient is low.


Author(s):  
Rui-dong Wang ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Hui-ren Zhu ◽  
Qi-ling Guo ◽  
...  

Heat transfer of the counter-inclined cylindrical and laid-back holes with and without impingement on the turbine vane leading edge model are investigated in this paper. To obtain the film cooling effectiveness and heat transfer coefficient, transient temperature measurement technique on complete surface based on double thermochromic liquid crystals is used in this research. A semi-cylinder model is used to model the vane leading edge which is arranged with two rows of holes. Four test models are measured under four blowing ratios including cylindrical film holes with and without impingement tube structure, laid-back film holes with and without impingement tube structure. This is the second part of a two-part paper, the first part paper GT2018-76061 focuses on film cooling effectiveness and this study will focus on heat transfer. Contours of surface heat transfer coefficient and laterally averaged result are presented in this paper. The result shows that the heat transfer coefficient on the surface of the leading edge is enhanced with the increase of blowing ratio for same structure. The shape of the high heat transfer coefficient region gradually inclines to span-wise direction as the blowing ratio increases. Heat transfer coefficient in the region where the jet core flows through is relatively lower, while in the jet edge region the heat transfer coefficient is relatively higher. Compared with cylindrical hole, laid-back holes give higher heat transfer coefficient. Meanwhile, the introduction of impingement also makes heat transfer coefficient higher compared with cross flow air intake. It is found that the heat transfer of the combination of laid-back hole and impingement tube can be very high under large blowing ratio which should get attention in the design process.


Sign in / Sign up

Export Citation Format

Share Document