flow separation
Recently Published Documents


TOTAL DOCUMENTS

1886
(FIVE YEARS 351)

H-INDEX

54
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Patrick D. Gray ◽  
Igal Gluzman ◽  
Flint O. Thomas ◽  
Thomas C. Corke

2022 ◽  
Vol 355 ◽  
pp. 01018
Author(s):  
Ying Liu ◽  
Xiaobo Zhang ◽  
Fei Zhang

Along with the development of advanced high-performance aero-engines to the higher thrust-weight ratio, further improvement of stage load, the adoption of new materials and new lightweight structures, the aeroelasticity of blade structure is becoming more and more prominent. The high cycle fatigue failure of blades significantly reduces the structural reliability during the process of development and using. At the same time, a large number of failure forms of aero-engine experimental and server can be attributed to aeroelastic problems. Therefore, it is urgent to improve the aeroelastic stability of the blade. One of the most important factors is to suppress the airflow separation, but its mechanism is still unclear. Based on this, this paper combines the aerodynamic damping analysis of energy method with the plasma excitation simulation and references low-speed wind tunnel plasma expansion test to consider the effects of different exciter distributions and intensities on flutter. The results show that stall flutter is related to the flow separation, but the flow separation is not a key factor that determinates whether the flutters occurs or not. Flutter suppression is strongly correlated with the shock wave intensity, amplitude of first harmonic aerodynamic force, low-speed separation and aerodynamic work density. In addition, the relative distribution of the excitation field and the positive work zone also has a direct effect on the suppression of flutter.


2021 ◽  
Vol 24 (6) ◽  
pp. 54-65
Author(s):  
V. V. Ovchinnikov ◽  
Yu. V. Petrov ◽  
Sh. F. Ganiev

Double-membrane gliding parachutes (DGP) obtain their wide variety of application, including the solution of cargo transportation problems. This parachute is a flexible canopy, which shape is maintained by ram air. In terms of the aerodynamic performance calculation and analysis when operating, DGP is the most complex aero elastic system. The computation of DPG aerodynamic performance is only possible, utilizing the methods of nonlinear aerodynamics and the nonlinear theory of elasticity methods.This paper investigates the aerodynamic characteristics of stable geometric shapes for various gliding parachutes, taking into account their dome shape both chord-wise and span-wise. Notably, the volumetric parachute profile is modeled by its median surface. The research, conducted by the authors, showed that such an aero elastic model of DGP allows you to obtain results that reflect correctly the qualitative effects of detached and free streamline flow. To solve the problem about the airflow over a gliding parachute, considering its canopy curvature, the method of discrete vortices with closed frames is employed, which allows you to calculate the paragliding wing aerodynamic performance within a wide range of angles of attack. There is also a possibility of flow separation simulation. The ideal incompressible liquid flow over the median surface of a stable shape for a double-membrane gliding parachute is regarded. The parachute fabric porosity is not analyzed, since the upper and lower DGP panels are made of either the low permeable or non-porous fabric. In the separated flow past, the aerodynamic coefficients are identified by time averaging to its large values after computing. The DGP aerodynamic performance computation results are given at a different value of its dome shape, as in the free streamline flow as in the flow separation. The computed coefficients, that allow us to consider the influence of canopy dome shape on its aerodynamic characteristics, are obtained. The proposed technique can be used for operational estimates of aerodynamic forces while designing and planning a pipe experiment.


Author(s):  
Bing Qiao ◽  
Yaping Ju ◽  
Chuhua Zhang

Abstract Negative flow from the outlet through the volute, diffuser, and impeller to the inlet of the centrifugal compressor can occur continuously as a result of system accidents. A physical comprehension of negative flow dynamics is crucial in evaluating the compressor characteristics under abnormal working conditions, and is also important in exploring the compressor aerodynamics over the entire flow range. However, limited research on the negative flow dynamics in centrifugal compressors, particularly with the consideration of vaned diffusers and volutes, can be found. This study aims to determine the compressor characteristics, including the negative flow rates of a centrifugal compressor, and to clarify the negative flow mechanism under the interaction of the volute, diffuser, and impeller. The last stage of a four-stage centrifugal compressor, including an internal volute, a vaned diffuser, and a closed impeller was simulated under both positive and negative flow conditions using a computational fluid dynamics (CFD) model. The results show that the pressure ratio-negative flow characteristic is almost matched with a parabolic curve. At negative flow rates, the backflow generated on the hub and shroud sides in the impeller expands upstream and causes flow separation in the diffuser. The negative flow enters the impeller at a large incidence angle and results in jet wall impingement on the pressure surface, flow spillage over the trailing edge, and flow separation near the suction surface. The impeller partially acts as a turbine impeller and performs negative work on the fluid. This work is of scientific significance to enrich the compressor aerodynamics in accident scenarios and of engineering value to improve the advanced design of compressor protection systems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dong Wang ◽  
Sheng Yan ◽  
Chen Chen ◽  
JianGuo Lin ◽  
Xupeng Wang ◽  
...  

Solitary wave propagating over a bottom-mounted barrier is simulated using the Incompressible Smoothed Particle Hydrodynamics (ISPH) method in order to study the generation and transport of turbulence associated with flow separation around submerged structures. For an accurate capture of turbulence characteristics during the wave propagation, rather than employing the standard sub-particle scale (SPS) model, the k-ε turbulence model is coupled with the numerical scheme. The results of the numerical model are compared with experimental data, and good agreement is observed in terms of mean velocity, free surface elevation, vorticity fields and turbulent kinetic energy. The numerical model is then employed to investigate the effects of wave non-linearity and geometrical size of the submerged barrier on the flow separation; and calculate the reflection, dissipation and transmission coefficients to evaluate the importance of energy dissipation due to the generation of vortices. The results of this study show that the developed ISPH method with the k-ε turbulence closure model is capable of reproducing the velocity fields and the turbulence characteristics accurately, and thus can be used to perform predictions of comprehensive hydrodynamics of flow-structure interactions in the urban hydro-environment systems.


Sign in / Sign up

Export Citation Format

Share Document