Numerical Analysis of Specific Absorption Rate and Heat Transfer in Human Head Subjected to Mobile Phone Radiation: Effects of User Age and Radiated Power

2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Teerapot Wessapan ◽  
Phadungsak Rattanadecho

The human head is one of the most sensitive parts of the human entire body when exposed to electromagnetic radiation. This electromagnetic radiation interacts with the human head and may lead to detrimental effects on human health. However, the resulting thermophysiologic response of the human head is not well understood. In order to gain insight into the phenomena occurring within the human head with temperature distribution induced by electromagnetic field, a detailed knowledge of absorbed power distribution as well as temperature distribution is necessary. This study presents a numerical analysis of specific absorption rate and heat transfer in the heterogeneous human head model exposed to mobile phone radiation. In the heterogeneous human head model, the effects of user age and radiated power on distributions of specific absorption rate and temperature profile within the human head are systematically investigated. This study focuses attention on organs in the human head in order to investigate the effects of mobile phone radiation on the human head. The specific absorption rate and the temperature distribution obtained by numerical solution of electromagnetic wave propagation and unsteady bioheat transfer equation in various tissues in the human head during exposure to mobile phone radiation are presented.

2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Teerapot Wessapan ◽  
Phadungsak Rattanadecho

Human eye is one of the most sensitive parts of the entire human body when exposed to electromagnetic fields. These electromagnetic fields interact with the human eye and may lead to cause a variety of ocular effects from high intensity radiation. However, the resulting thermo-physiologic response of the human eye to electromagnetic fields is not well understood. In order to gain insight into the phenomena occurring within the human eye with temperature distribution induced by electromagnetic fields, a detailed knowledge of absorbed power distribution as well as temperature distribution is necessary. This study presents a numerical analysis of specific absorption rate (SAR) and heat transfer in the heterogeneous human eye model exposed to electromagnetic fields. In the heterogeneous human eye model, the effect of power density on specific absorption rate and temperature distribution within the human eye is systematically investigated. In particular, the results calculated from a developed heat transfer model, considered natural convection and porous media theory, are compared with the results obtained from a conventional heat transfer model (based on conduction heat transfer). In all cases, the temperatures obtained from the developed heat transfer model have a lower temperature gradient than that of the conventional heat transfer model. The specific absorption rate and the temperature distribution in various parts of the human eye during exposure to electromagnetic fields at 900 MHz, obtained by numerical solution of electromagnetic wave propagation and heat transfer equation, are also presented. The results show that the developed heat transfer model, which is the more accurate way to determine the temperature increase in the human eye due to electromagnetic energy absorption from electromagnetic field exposure.


2020 ◽  
Author(s):  
Anand Swaminathan ◽  
Ramprakash A ◽  
Dhejonithan K

Despite numerous advantages, mobile phones cause serious health issues to people due to electromagnetic radiation. Various head models already exist to study the impact of radiation on a human head. The accuracy of the measurement of power absorbed by different layers of a head should be high. A new head model with six layers is proposed in this paper. Parameters such as dielectric constant, conductivity and mass density of different tissue layers skin, fat, bone, Dura, cerebrospinal fluid (CSF), and brain are extracted from the Federal Communications Commission (FCC) database. To study the impact of radiation in the proposed model, standard planar inverted F-antennas (PIFA) capable to radiate at 1.7 GHz and 2.4 GHz are used. Simulations are performed using ANSYS Electromagnetics Suite. The analysis shows that the specific absorption rate (SAR) in the brain layer decreased in the proposed model when compared to the existing model.


The interaction of a mobile antenna and a passenger is analyzed inside a metallic enclosure. The specific absorption rate (SAR) of the passenger in the elevator using a mobile phone is calculated. A standardized model of human head is filled with liquid that simulates the RF absorption characteristics. The non-uniform mesh technique in frequency domain is employed to obtain 1g SAR [Specific Absorption Rate] and other important parameters. The mobile phone is modeled as a quarter wavelength Planar Inverted F Antenna (PIFA), and it is of .01m from the head. PIFA is operated at frequencies of 900 and 1800MHz with transmitting power .3 W . It is observed that the values of SAR inside the metallic enclosure exceeds the RF safety limits. Therefore, this project proposes a novel method to reduce the SAR by using carbon foam which absorbs microwave radiation. Simulated results have evidenced the efficiency of the proposed technique of SAR reduction inside the enclosures.


Sign in / Sign up

Export Citation Format

Share Document