Feedback Ramp Metering Using Godunov Method Based Hybrid Model

Author(s):  
Neveen Shlayan ◽  
Pushkin Kachroo

In this paper, a new feedback control design for an isolated freeway ramp is presented utilizing hybrid dynamics based on Godunov's numerical technique. Previous feedback ramp metering designs have been mainly based on either discretized linearized methods such as ALINEA or nonlinear feedback designs based on ordinary differential equations for the traffic model. These models use lumped parameters, which fail to represent some details of the rarefaction wave phenomenon of the distributed model. Godunov's conditions employ the data known on both sides of each boundary in order to determine the characteristics of the boundary conditions. This paper uses Godunov's hybrid lumped model based on which feedback control design is proposed and simulation results for the model are presented. Real data is collected on one of the major freeway on-ramps in the Las Vegas area. The roadway parameters are estimated using least squares estimator then are used in the proposed Godunov based hybrid model. The proposed feedback ramp control design is compared with the actual ramp control algorithm. Self-tuning adaptive control is also performed using recursive parameter updating with and without exponential forgetting.

2011 ◽  
Vol 34 (7) ◽  
pp. 891-902 ◽  
Author(s):  
Shengjun Wen ◽  
Mingcong Deng ◽  
Shuhui Bi ◽  
Dongyun Wang

In this paper, a robust nonlinear control design method using an operator-based robust right coprime factorization approach and its realization based on a distributed control system (DCS) device are considered for a multi-tank process. In detail, for the multi-tank process, consisting of a water-level process and a water-flow process, theoretical models are developed according to the Bernoulli theorem. Based on the obtained models, a robust nonlinear feedback control design is presented by using robust right coprime factorization for the multi-tank process. Further, from a large-scale industrial application viewpoint, the realization of the designed operator-based robust right coprime factorization controllers is considered by using a DCS device. Because there are some nonlinear functions in the designed controllers which cannot be realized straightforwardly in the DCS device such that the designed controllers need to be realized approximately. That is, there exist some parasitic terms for the approximated realization of the controllers in the real system. As a result, the parasitic terms and processes’ unknown uncertainties should be considered simultaneously. In this paper, a robust condition is derived to guarantee robust stability of the nonlinear feedback control system with the parasitic terms and the uncertainties. Moreover, tracking controller design problem for the multi-tank process is discussed. Finally, by using a DCS device (CENTUM CS3000), experimental results are given to confirm the effectiveness of the proposed design scheme.


2011 ◽  
Vol 34 (3) ◽  
pp. 698-705 ◽  
Author(s):  
Rajnish Sharma ◽  
Srinivas R. Vadali ◽  
John E. Hurtado

Sign in / Sign up

Export Citation Format

Share Document