lumped model
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 69)

H-INDEX

22
(FIVE YEARS 4)

Author(s):  
Olivier Munyaneza ◽  
Jung Woo Sohn

This paper describes the design, simulation, and performance evaluation of hybrid MR damper on quarter bus semi-active seat suspension coupled with human biodynamic model. Also, the whole body vibration (WBV) exposures were evaluated based on the international standard ISO 2631 (1997), and its parameters were used to measure the level of discomfort for bus drivers. The hybrid MR damper was proposed to enhance the damping force within low current supplied and achieve a fail-soft capability in case of electrical failure. The characteristics of the proposed hybrid MR damper were compared to the conventional MR damper by considering the same size, materials, and current input. The designed damper was incorporated to seat suspension system coupled with biodynamic lumped model, and the governing equations of motion of the full model were derived. Skyhook controller was used to control the amount of current to be supplied to hybrid MR damper. The controlled semi-active hybrid MR and conventional MR seat suspension are compared to uncontrolled system for two types of road excitation. The simulated results show that the driver seat comfort was improved by the skyhook controller than the uncontrolled case. The evaluated WBV showed that the hybrid MR damper can improve the driver life from fairly uncomfortable to little discomfort.


2021 ◽  
Vol 13 (24) ◽  
pp. 5023
Author(s):  
Chen Chen ◽  
Dingbin Luan ◽  
Song Zhao ◽  
Zhan Liao ◽  
Yang Zhou ◽  
...  

Floods have brought a great threat to the life and property of human beings. Under the premise of strengthening flood control engineering measures and following the strategic thinking of sustainable development, many achievements have been made in flood forecasting recently. However, due to the complexity of the traditional lumped model and distributed model, the hydrologic parameter calibration process is full of difficulties, leading to a long development cycle of a reasonable hydrologic prediction model. Even for modern data-driven models, the spatial distribution characteristics of the rainfall data are also not fully mined. Based on this situation, this paper abstracts the rainfall data into the graph structure data, uses remote sensing images to extract the elevation information, introduces the graph attention mechanism to extract the spatial characteristics of rainfall, and employs long-term and short-term memory (LSTM) network to fuse the spatial and temporal characteristics for flood prediction. Through well-designed experiments, the forecasting effect of flood peak value and flood arrival time is verified. Furthermore, compared with the LSTM model and BIGRU model without spatial feature extraction, the advantages of spatiotemporal feature fusion are highlighted. The specific performance is that the RMSE (the root means square error) and R2(coefficient of determination) of the GA-RNN model have been significantly improved. Finally, we conduct experiments on the observed ten rainfall events in the history of the target watershed. According to the hydrological prediction specifications, the model can be evaluated as a Class B flood forecasting model.


2021 ◽  
Vol 930 (1) ◽  
pp. 012071
Author(s):  
R I Hapsari ◽  
M Syarifuddin ◽  
R I Putri ◽  
D Novianto

Abstract Soil moisture is an important parameter in landslides because of increased pore pressure and decreased shear strength. This research aims to derive soil moisture indicators from two hydrological models: the physically-based distributed hydrological model and the lumped model. Rainfall-Runoff-Inundation (RRI) Model is used to simulate the hydrological response of catchments to the rainfall-induced landslide in a distributed manner. Tank Model as a lumped hydrological model is also used in this study to simulate the dynamic of soil moisture. The study area is the upper Brantas River Basin, prone to landslides due to heavy rainfall and steep slope. Calibration of the model is conducted by tuning the model according to the river discharge data. The simulation indicates that acceptable performance is confirmed. Tank Model can provide the dynamic of the soil moisture. However, by using this approach, the spatial variation of the soil moisture cannot be presented. Regarding the quantitative amount of soil water content, RRI Model could make a reasonable simulation though the temporal variation is not adequately reproduced. Validation of this method with satellite soil moisture as well as ground measurement is also presented. The challenges of using these approaches to develop landslide hazard assessment are discussed.


2021 ◽  
Author(s):  
Shoukathvali Khan ◽  
K. Srinivasa ◽  
Koushik Guha

Abstract In this paper, absolute evaluation of Radio Frequency Micro Electromechanical System (RF MEMS) to improve parameters like high actuation voltage and low switching time, by introducing a new fixed - fixed RF MEMS capacitive switch. The proposed switch designed step-by-step evaluation of the plane beam, a novel structure of beam, and deposit the perforations and meanders to reducethe pull-in voltage. All the RF MEMS switch design parameters arestudy using the COMSOL Multiphysics FEM (Finite Element Model) tool. The proposed RF MEMS switch express low pull-in voltageof 4.75V and good return, insertion, and isolation losses in both upstate and downstate conditions are >10dB, below 0.1dB and 60dB, respectively. The dielectric layer as silicon nitride (Si3N4), beam as a gold material. The RLC values are extracted by using lumped model design. The RF MEMS shunt switch (capacitance, inductance, and resistance) of the MEMS bridge are accurately evaluated from the S-parameter analysis. The computational and simulated results are good agreement with each other, which indicates the validity of the proposed switch for K (18-26) GHz band applications.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257849
Author(s):  
Muhammad Wasim ◽  
Ahsan Ali ◽  
Mohammad Ahmad Choudhry ◽  
Faisal Saleem ◽  
Inam Ul Hasan Shaikh ◽  
...  

An airship is lighter than an air vehicle with enormous potential in applications such as communication, aerial inspection, border surveillance, and precision agriculture. An airship model is made up of dynamic, aerodynamic, aerostatic, and propulsive forces. However, the computation of aerodynamic forces remained a challenge. In addition to aerodynamic model deficiencies, airship mass matrix suffers from parameter variations. Moreover, due to the lighter-than-air nature, it is also susceptible to wind disturbances. These modeling issues are the key challenges in developing an efficient autonomous flight controller for an airship. This article proposes a unified estimation method for airship states, model uncertainties, and wind disturbance estimation using Unscented Kalman Filter (UKF). The proposed method is based on a lumped model uncertainty vector that unifies model uncertainties and wind disturbances in a single vector. The airship model is extended by incorporating six auxiliary state variables into the lumped model uncertainty vector. The performance of the proposed methodology is evaluated using a nonlinear simulation model of a custom-developed UETT airship and is validated by conducting a kind of error analysis. For comparative studies, EKF estimator is also developed. The results show the performance superiority of the proposed estimator over EKF; however, the proposed estimator is a bit expensive on computational grounds. However, as per the requirements of the current application, the proposed estimator can be a preferred choice.


2021 ◽  
Author(s):  
Henrik C. Pedersen ◽  
Torben O. Andersen ◽  
Niels C. Bender

Abstract When considering digital displacement machines, one of the key elements are the fast switching valves. However, the dynamic requirements and conflicting design objectives mean that designing these fast-switching valves is a complex process, which pushes the technology to the limit. Optimization approaches are therefore required just to find feasible and, secondly, optimal solutions. However, dynamic CFD simulation is required to accurately describe dynamic fluid effects as fluid stiction, -drag and -end damping. This limits the possibilities to use optimization approaches due to the computational burden imposed, the need for dynamic mesh generation, and the design parameterization. Hence, this paper investigates analytical approximations and the error size introduced by simplifying dynamic fluid friction effects into a lumped parameter form. Specifically, the article presents a comprehensive parameter study of selected design parameters’ influence on the fluid forces in fast switching annulus valves, based on both analytical expressions and results derived from dynamic CFD simulations. The focus is primarily on describing the effects and size of the flow forces resulting from changes in parametric design parameters that influence the flow geometry. The results reveal a fair correlation between the fluid force predicted by the rapidly executable lumped model and the CFD model.


2021 ◽  
Author(s):  
Anže Čelik ◽  
Matjaž Rupnik ◽  
Marko Žust

The paper shows and explains customer claim regarding improper functionality of hydraulic brake valve integrated into harvester machine. Further, the paper also presents simulation-based approach to understand and solve the issue. In the first step, fully detailed one-dimensional (1D) lumped model has been made in order to reproduce customer issue. Here, it is essentially to mention that (simplified) customer environment/machine was also part of detailed 1D numerical model – customer engagement in root-cause analysis is important. Thanks to detailed simulation model, deep understanding of the key parameters that affect the machine malfunction was possible in the second step. Model allows performing sensitivity study on key parameters with high fidelity. Lastly, based on detected key parameters, harvester brake valve has been updated/redesigned and sent to customer for final validation. Customer satisfaction along with short and effective response time of Poclain development team convert challenge situation to success.


2021 ◽  
Author(s):  
María Elisa Melian ◽  
Cintia Alejandra Briones Nieva ◽  
Laura Domínguez ◽  
Elio Emilio Gonzo ◽  
Santiago Palma ◽  
...  

Aim: Understanding a drug dissolution process from solid dispersions (SD) to develop formulations with predictable in vivo performance. Materials & methods: Dissolution data of fenbendazole released from the SDs and the control physical mixtures were analyzed using the Lumped mathematical model to estimate the parameters of pharmaceutical relevance. Results: The fit data obtained by Lumped model showed that all SDs have a unique dissolution profile with an error of ±4.1% and an initial release rate 500-times higher than the pure drug, without incidence of drug/polymer ratio or polymer type. Conclusion: The Lumped model helped to understand that the main factor influencing the fenbendazole release was the type formulation (SD or physical mixture), regardless of the type or amount of polymer used.


Author(s):  
Fredrik Ohlsson ◽  
Pontus Johannisson ◽  
Cristina Rusu

AbstractWe consider nonlinear shape effects appearing in the lumped electromechanical model of a bimorph piezoelectric bridge structure due to the interaction between the electromechanical constitutive model and the geometry of the structure. At finite proof-mass displacement and electrode voltage, the shape of the beams is no longer given by Euler-Bernoulli theory which implies that shape effects enter in both the electrical and mechanical domains and in the coupling between them. Accounting for such effects is important for the accurate modelling of, e.g., piezoelectrical energy harvesters and actuators in the regime of large deflections and voltages. We present a general method, based on a variational approach minimizing the Gibbs enthalpy of the system, for computing corrections to the nominal shape function and the associated corrections to the lumped model. The lowest order correction is derived explicitly and is shown to produce significant improvements in model accuracy, both in terms of the Gibbs enthalpy and the shape function itself, over a large range of displacements and voltages. Furthermore, we validate the theoretical model using large deflection finite element simulations of the bridge structure and conclude that the lowest order correction substantially improve the model, obtaining a level of accuracy expected to be sufficient for most applications. Finally, we derive the equations of motion for the lowest order corrected model and show how the coupling between the electromechanical properties and the geometry of the bridge structure introduces nonlinear interaction terms.


Sign in / Sign up

Export Citation Format

Share Document