nonlinear feedback control
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 34)

H-INDEX

38
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7602
Author(s):  
Jian Zhao ◽  
Xianku Zhang ◽  
Yilin Chen ◽  
Pengrui Wang

This manuscript addresses the feasibility and significance of using a sine function to modify the system error of a normal linear feedback control to achieve more efficient capabilities in terms of energy-saving. The associated mathematic modeling and assessment were demonstrated by presenting a case analysis on the capabilities of controlling water level for a single tank. The principle of robust control and the theories and detailed algorithm of Lyapunov stability were applied to assess the result derived by novel nonlinear feedback in the form of sine function for optimizing the robustness of the PID (Proportional–Integral–Derivative) controller and economizing energy. Two control simulations are compared: nonlinear feedback control using a sine function and conventional fuzzy control. The results reveal that using the nonlinear feedback controller, a reduction of up to 32.9% of the average controlled quantity is achieved, and the performance index is improved by 24.0% with satisfactory robustness. The proposed nonlinear feedback control using a sine function provides simplicity, convenient implementation, and energy efficiency.


Author(s):  
Parisa Khosravi ◽  
Robert H. Bishop

AbstractA strategy to design exact nonlinear feedback controllers based on a recursive application of approximate linearization methods is examined. The computations are algebraic and computationally simpler than solving the set of coupled nonlinear partial differential equations thereby facilitating practical symbolic computer computations enabling discernment of evolving patterns in the approximate solutions as the order of approximation increases. Utilizing the null space that appears at each step in the computations as part of the computations, a family of analytic solutions can be generated asymptotically. There are possibilities for optimizing the performance by judiciously choice of analytic solution that emerge from the selective use of the null space.


Author(s):  
Anna Samoilova ◽  
Alexander Nepomnyashchy

We apply nonlinear feedback control to govern the stability of long-wave oscillatory Marangoni patterns. We focus on the patterns caused by instability in thin liquid film heated from below with a deformable free surface. This instability emerges in the case of substrate of low thermal conductivity, when two monotonic long-wave instabilities, Pearson's and deformational ones, are coupled. We provide weakly nonlinear analysis within the amplitude equations, which govern the evolution of the layer thickness and the temperature deviation. The action of the nonlinear feedback control on the nonlinear interaction of two standing waves is investigated. It is shown that quadratic feedback control can produce additional stable structures (standing rolls, standing squares and standing rectangles), which are subject to instability leading to traveling wave in the uncontrolled case.


Sign in / Sign up

Export Citation Format

Share Document