Algebraic Anisotropic Turbulence Modeling of Compound Angled Film Cooling Validated by Particle Image Velocimetry and Pressure Sensitive Paint Measurements

2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Xueying Li ◽  
Yanmin Qin ◽  
Jing Ren ◽  
Hongde Jiang

The complex structures in the film cooling flow field of gas turbines lead to the anisotropic property of the turbulent eddy viscosity and scalar diffusivity. An algebraic anisotropic turbulence model is developed aiming at a more accurate modeling of the Reynolds stress and turbulent scalar flux. In this study, the algebraic anisotropic model is validated by a series of in-house experiments for cylindrical film cooling with compound angle injection of 0, 45, and 90 deg. Adiabatic film cooling effectiveness and flow field are measured using pressure sensitive paint and particle image velocimetry techniques on film cooling test rig in Tsinghua University. Detailed analyses of computational simulations are performed. The algebraic anisotropic model gives a good prediction of the secondary vortices associated with the jet and the trajectory of the jet, therefore improves the prediction of the scalar field. On one hand, the anisotropic eddy viscosity improves the modeling of Reynolds stress and the predictive flow field. On the other hand, the anisotropic turbulent scalar-flux model includes the role of anisotropic eddy viscosity in modeling of scalar flux and directly improves the turbulent scalar flux prediction.

Author(s):  
Xueying Li ◽  
Yanmin Qin ◽  
Jing Ren ◽  
Hongde Jiang

The complex structures in the flow field of gas turbine film cooling lead to the anisotropic property of the turbulent eddy viscosity and scalar diffusivity. An algebraic anisotropic turbulence model is developed while aiming at a more accurate modeling of the Reynolds stress and turbulent scalar flux. In this study the algebraic anisotropic model is validated by a series of in-house experiments for cylindrical film cooling with compound angle injection of 0, 45, and 90 deg. Adiabatic film cooling effectiveness and flow field are measured using PSP and PIV techniques on film cooling test rig in Tsinghua University. Detailed analyses of computational simulations are performed. The algebraic anisotropic model gives a good prediction of the secondary vortices associated with the jet and the trajectory of the jet, therefore improves the prediction of the scalar field. On one hand, the anisotropic eddy viscosity improves the modeling of Reynolds stress and the predictive flow field. On the other hand, the anisotropic turbulent scalar-flux model includes the role of anisotropic eddy viscosity in modeling of scalar flux and directly improves the turbulent scalar flux prediction.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Othman Hassan ◽  
Ibrahim Hassan

This paper presents experimental investigations of the flow-field characteristics downstream a Scaled-Up Micro-Tangential-Jet (SUMTJ) film-cooling scheme using the particle image velocimetry (PIV) technique over a flat plate. The SUMTJ scheme is a shaped scheme designed so that the secondary jet is supplied tangentially to the surface. The scheme combines the thermal benefits of tangential injection and the enhanced material strength of discrete holes’ schemes compared with continuous slot schemes. The flow-field characteristics downstream one row of holes were investigated at three blowing ratios, 0.5, 1.0, and 1.5, and were calculated based on the scheme exit area. A density ratio of unity, a Reynolds number of 1.16 × 105, and an average turbulence intensity of 8% were used throughout the investigations. The performance of the SUMTJ scheme was compared to that of the circular hole scheme, base line case case, at the same test conditions and blowing ratios. From the investigations, it was noticeable that the SUMTJ scheme jet stays attached to the surface for long downstream distances at all investigated blowing ratios. Moreover, the lateral expansion angles of the scheme help perform a continuous film from adjacent jets close to the schemes’ exits; however, they have a negative impact on the uniformity of the film thickness in the lateral direction. The vorticity strength downstream the SUMTJ scheme in the y-z plane was much less than the vorticity strength downstream the circular scheme at all blowing ratios. However, the vorticity behavior in the shear layer between the secondary SUMTJ scheme jet and the main stream was changing dramatically with the blowing ratio. The latter is expected to have a significant impact on the film-cooling performance as the blowing ratio increases.


2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

2010 ◽  
Vol 43 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Emily J. Berg ◽  
Jessica L. Weisman ◽  
Michael J. Oldham ◽  
Risa J. Robinson

Sign in / Sign up

Export Citation Format

Share Document