Simulations of High Reynolds Number Air Flow Over the NACA-0012 Airfoil Using the Immersed Boundary Method

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
James P. Johnson ◽  
Gianluca Iaccarino ◽  
Kuo-Huey Chen ◽  
Bahram Khalighi

The immersed-boundary method is coupled to an incompressible-flow Reynolds-averaged Navier Stokes solver, based on a two-equation turbulence model, to perform unsteady numerical simulations of airflow past the NACA-0012 airfoil for several angles of attack and Reynolds numbers of 5.0×105 and 1.8×106. A preliminary study is performed to evaluate the sensitivity of the calculations to the computational mesh and to guide the creation of the computational cells for the unsteady calculations. Qualitative characterizations of the flow in the vicinity of the airfoil are obtained to assess the capability of locally refined grids to capture the thin boundary layers close to the airfoil leading edge as well as the wake flow emanating from the trailing edge. Quantitative analysis of aerodynamic force coefficients and wall pressure distributions are also reported and compared to experimental results and those from body-fitted grid simulations using the same solver to assess the accuracy and limitations of this approach. The immersed-boundary simulations compared well to the experimental and body-fitted results up to the occurrence of separation. After that point, neither computational approach provided satisfactory solutions.

Author(s):  
James P. Johnson ◽  
Gianluca Iaccarino ◽  
Kuo-Huey Chen ◽  
Bahram Khalighi

The Immersed-Boundary Method is coupled to an incompressible-flow RANS solver, based on a two-equation turbulence model, to perform unsteady numerical simulations of airflow past the NACA-0012 airfoil for several angles of attack and Reynolds numbers of 5.0×105 and 1.8×106. Qualitative characterizations of the flow in the vicinity of the airfoil are obtained to show the need for locally refined grids to capture the thin boundary layers close to the airfoil leading edges. Quantitative analysis of aerodynamic force coefficients and wall pressure distributions are also reported and compared to experimental results and those from body-fitted grid simulations using the same solver to assess the accuracy and limitations of this approach. The Immersed-Boundary simulations compared well to the experimental and body-fitted results up to the occurrence of separation. After that point, neither computational approach provided satisfactory solutions.


Author(s):  
Karim M. Ali ◽  
Mohamed Madbouli ◽  
Hany M. Hamouda ◽  
Amr Guaily

This work introduces an immersed boundary method for two-dimensional simulation of incompressible Navier-Stokes equations. The method uses flow field mapping on the immersed boundary and performs a contour integration to calculate immersed boundary forces. This takes into account the relative location of the immersed boundary inside the background grid elements by using inverse distance weights, and also considers the curvature of the immersed boundary edges. The governing equations of the fluid mechanics are solved using a Galerkin-Least squares finite element formulation. The model is validated against a stationary and a vertically oscillating circular cylinder in a cross flow. The results of the model show acceptable accuracy when compared to experimental and numerical results.


2013 ◽  
Vol 477-478 ◽  
pp. 281-284
Author(s):  
Jie Yang ◽  
Song Ping Wu

An immersed boundary method based on the ghost-cell approach is presented in this paper. The compressible Navier-Stokes equations are discretized using a flux-splitting method for inviscid fluxes and second-order central-difference for the viscous components. High-order accuracy is achieved by using weighted essentially non-oscillatory (WENO) and Runge-Kutta schemes. Boundary conditions are reconstructed by a serial of linear interpolation and inverse distance weighting interpolation of flow variables in fluid domain. Two classic flow problems (flow over a circular cylinder, and a NACA 0012 airfoil) are simulated using the present immersed boundary method, and the predictions show good agreement with previous computational results.


Sign in / Sign up

Export Citation Format

Share Document