Investigation of In-Cylinder Engine Flow Quadruple Decomposition Dynamical Behavior Using Proper Orthogonal Decomposition and Dynamic Mode Decomposition Methods

2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Wenjin Qin ◽  
Lei Zhou ◽  
Daming Liu ◽  
Ming Jia ◽  
Maozhao Xie

In order to study the in-cylinder flow characteristics, one hundred consecutive cycles of velocity flow fields were investigated numerically by large eddy simulation, and the proper orthogonal decomposition (POD) algorithm was used to decompose the results. The computed flow fields were divided into four reconstructed parts, namely mean part, coherent part, transition part, and turbulent part. Then, the dynamic mode decomposition (DMD) algorithm was used to analyze the characteristics of the reconstructed fields. The results show that DMD method is capable of finding the dominant frequencies in every reconstructed flow part and identifying the flow structures at equilibrium state. In addition, the DMD results also reveal that the reconstructed parts are related to each other through the break-up and attenuation process of unstable flow structures, while the flow energy cascade occurs among these parts through different scale vortex generation and dissipation process.

2020 ◽  
Author(s):  
Christian Amor ◽  
José M Pérez ◽  
Philipp Schlatter ◽  
Ricardo Vinuesa ◽  
Soledad Le Clainche

Abstract This article introduces some soft computing methods generally used for data analysis and flow pattern detection in fluid dynamics. These techniques decompose the original flow field as an expansion of modes, which can be either orthogonal in time (variants of dynamic mode decomposition), or in space (variants of proper orthogonal decomposition) or in time and space (spectral proper orthogonal decomposition), or they can simply be selected using some sophisticated statistical techniques (empirical mode decomposition). The performance of these methods is tested in the turbulent wake of a wall-mounted square cylinder. This highly complex flow is suitable to show the ability of the aforementioned methods to reduce the degrees of freedom of the original data by only retaining the large scales in the flow. The main result is a reduced-order model of the original flow case, based on a low number of modes. A deep discussion is carried out about how to choose the most computationally efficient method to obtain suitable reduced-order models of the flow. The techniques introduced in this article are data-driven methods that could be applied to model any type of non-linear dynamical system, including numerical and experimental databases.


2016 ◽  
Vol 802 ◽  
pp. 1-4 ◽  
Author(s):  
Bernd R. Noack

Data-driven low-order modelling has been enjoying rapid advances in fluid mechanics. Arguably, Sirovich (Q. Appl. Maths, vol. XLV, 1987, pp. 561–571) started these developments with snapshot proper orthogonal decomposition, a particularly simple method. The resulting reduced-order models provide valuable insights into flow physics, allow inexpensive explorations of dynamics and operating conditions, and enable model-based control design. A winning argument for proper orthogonal decomposition (POD) is the optimality property, i.e. the guarantee of the least residual for a given number of modes. The price is unpleasant frequency mixing in the modes which complicates their physical interpretation. In contrast, temporal Fourier modes and dynamic mode decomposition (DMD) provide pure frequency dynamics but lose the orthonormality and optimality property of POD. Sieber et al. (J. Fluid Mech., vol. 792, 2016, pp. 798–828) bridge the least residual and pure frequency behaviour with an ingenious interpolation, called spectral proper orthogonal decomposition (SPOD). This article puts the achievement of the TU Berlin authors in perspective, illustrating the potential of SPOD and the challenges ahead.


2021 ◽  
Vol 928 ◽  
Author(s):  
Vilas J. Shinde ◽  
Datta V. Gaitonde

Common modal decomposition techniques for flow-field analysis, data-driven modelling and flow control, such as proper orthogonal decomposition and dynamic mode decomposition, are usually performed in an Eulerian (fixed) frame of reference with snapshots from measurements or evolution equations. The Eulerian description poses some difficulties, however, when the domain or the mesh deforms with time as, for example, in fluid–structure interactions. For such cases, we first formulate a Lagrangian modal analysis (LMA) ansatz by a posteriori transforming the Eulerian flow fields into Lagrangian flow maps through an orientation and measure-preserving domain diffeomorphism. The development is then verified for Lagrangian variants of proper orthogonal decomposition and dynamic mode decomposition using direct numerical simulations of two canonical flow configurations at Mach 0.5, i.e. the lid-driven cavity and flow past a cylinder, representing internal and external flows, respectively, at pre- and post-bifurcation Reynolds numbers. The LMA is demonstrated for several situations encompassing unsteady flow without and with boundary and mesh deformation as well as non-uniform base flows that are steady in Eulerian but not in Lagrangian frames. We show that application of LMA to steady non-uniform base flow yields insights into flow stability and post-bifurcation dynamics. LMA naturally leads to Lagrangian coherent flow structures and connections with finite-time Lyapunov exponents. We examine the mathematical link between finite-time Lyapunov exponents and LMA by considering a double-gyre flow pattern. Dynamically important flow features in the Lagrangian sense are recovered by performing LMA with forward and backward (adjoint) time procedures.


2018 ◽  
Vol 847 ◽  
pp. 821-867 ◽  
Author(s):  
Aaron Towne ◽  
Oliver T. Schmidt ◽  
Tim Colonius

We consider the frequency domain form of proper orthogonal decomposition (POD), called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space–time POD problem for statistically stationary flows and leads to modes that each oscillate at a single frequency. This form of POD goes back to the original work of Lumley (Stochastic Tools in Turbulence, Academic Press, 1970), but has been overshadowed by a space-only form of POD since the 1990s. We clarify the relationship between these two forms of POD and show that SPOD modes represent structures that evolve coherently in space and time, while space-only POD modes in general do not. We also establish a relationship between SPOD and dynamic mode decomposition (DMD); we show that SPOD modes are in fact optimally averaged DMD modes obtained from an ensemble DMD problem for stationary flows. Accordingly, SPOD modes represent structures that are dynamic in the same sense as DMD modes but also optimally account for the statistical variability of turbulent flows. Finally, we establish a connection between SPOD and resolvent analysis. The key observation is that the resolvent-mode expansion coefficients must be regarded as statistical quantities to ensure convergent approximations of the flow statistics. When the expansion coefficients are uncorrelated, we show that SPOD and resolvent modes are identical. Our theoretical results and the overall utility of SPOD are demonstrated using two example problems: the complex Ginzburg–Landau equation and a turbulent jet.


Sign in / Sign up

Export Citation Format

Share Document