Ultrafast Tunable Near-Field Radiative Thermal Modulator Made of Ge3Sb2Te6

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Lu Lu ◽  
Jinlin Song ◽  
Kun Zhou ◽  
Han Ou ◽  
Qiang Cheng ◽  
...  

We show numerically the phase change material Ge3Sb2Te6 (GST) with special configuration as a heat modulator in the regime of near-field radiative heat transfer (NFRHT). The ability of GST to allow ultrafast reversible switch between two phases endows it great potential in practical modulation application. By designing silicon carbide (SiC) nanoholes (NHs) filled with GST, this configuration could achieve a considerable modulation effect and large near-field radiative heat flux. The underlying mechanism can be explained by the observation that the entire configuration supports either hyperbolic modes or surface phonon polaritons (SPhPs) resonance modes and even the combination of both modes, thereby resulting in the remarkable modulation effect. In addition, the effects of the volume filling factor and graphene coverage are also investigated at the vacuum gap distance of 100 nm. With graphene coverage, the modulation factor can be further improved to as high as 0.72 achieved at the volume filling factor of 0.6 with temperature difference of 20 K. The proposed configuration has the potential to effectively modulate heat in the near-field regime for designing heat modulation applications in the future.

Author(s):  
Gao-Feng Ju ◽  
Tong-Biao Wang ◽  
De-Jian Zhang ◽  
Wen-Xing Liu ◽  
Tian-Bao Yu ◽  
...  

2014 ◽  
Vol 136 (9) ◽  
Author(s):  
X. L. Liu ◽  
T. J. Bright ◽  
Z. M. Zhang

This work addresses the validity of the local effective medium theory (EMT) in predicting the near-field radiative heat transfer between multilayered metamaterials, separated by a vacuum gap. Doped silicon and germanium are used to form the metallodielectric superlattice. Different configurations are considered by setting the layers adjacent to the vacuum spacer as metal–metal (MM), metal–dielectric (MD), or dielectric–dielectric (DD) (where M refers to metallic doped silicon and D refers to dielectric germanium). The calculation is based on fluctuational electrodynamics using the Green's function formulation. The cutoff wave vectors for surface plasmon polaritons (SPPs) and hyperbolic modes are evaluated. Combining the Bloch theory with the cutoff wave vector, the application condition of EMT in predicting near-field radiative heat transfer is presented quantitatively and is verified by exact calculations based on the multilayer formulation.


Sign in / Sign up

Export Citation Format

Share Document