lossy media
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 33)

H-INDEX

26
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6730
Author(s):  
Md Shifatul Islam ◽  
Asimina Kiourti ◽  
Md Asiful Islam

The idea of passive biosensing through inductive coupling between antennas has been of recent interest. Passive sensing systems have the advantages of flexibility, wearability, and unobtrusiveness. However, it is difficult to build such systems having good transmission performance. Moreover, their near-field coupling makes them sensitive to misalignment and movements. In this work, to enhance transmission between two antennas, we investigate the effect of superstrates and metamaterials and propose the idea of dielectric fill in between the antenna and the superstrate. Preliminary studies show that the proposed method can increase transmission between a pair of antennas significantly. Specifically, transmission increase of ≈5 dB in free space and ≈8 dB in lossy media have been observed. Next, an analysis on a representative passive neurosensing system with realistic biological tissues shows very low transmission loss, as well as considerably better performance than the state-of-the-art systems. Apart from transmission enhancement, the proposed technique can significantly mitigate performance degradation due to misalignment of the external antenna, which is confirmed through suitable sensitivity analysis. Overall, the proposed idea can have fascinating prospects in the field of biopotential sensing for different biomedical applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paolo Baccarelli ◽  
Alessandro Calcaterra ◽  
Fabrizio Frezza ◽  
Fabio Mangini ◽  
Nicholas Ricciardella ◽  
...  

AbstractThe deep penetration of electromagnetic waves into lossy media can be obtained by properly generating inhomogeneous waves. In this work, for the very first time, we demonstrate the physical implementation and the practical relevance of this phenomenon. A thorough numerical investigation of the deep-penetration effects has been performed by designing and comparing three distinct practical radiators, emitting either homogeneous or inhomogeneous waves. As concerns the latter kind, a typical Menzel microstrip antenna is first used to radiate improper leaky waves. Then, a completely new approach based on an optimized 3-D horn TEM antenna applied to a lossy prism is described, which may find applications even at optical frequencies. The effectiveness of the proposed radiators is measured using different algorithms to consider distinct aspects of the propagation in lossy media. We finally demonstrate that the deep penetration is possible, by extending the ideal and theoretical evidence to practical relevance, and discuss both achievements and limits obtained through numerical simulations on the designed antennas.


Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 569-578
Author(s):  
Spyridon Koutsoumpos ◽  
Panagiotis Giannios ◽  
Konstantinos Moutzouris

Critical angle refractometry is an established technique for determining the refractive index of liquids and solids. For transparent samples, the critical angle refractometry precision is limited by incidence angle resolution. For lossy samples, the precision is also affected by reflectance measurement error. In the present study, it is demonstarted that reflectance error can be practically eliminated, provided that the sample’s extinction coefficient is a priori known with sufficient accuracy (typically, better than 5%) through an independent measurement. Then, critical angle refractometry can be as precise with lossy media as with transparent ones.


2021 ◽  
Author(s):  
Fariba Lotfi ◽  
Nafiseh Sang-Nourpour ◽  
Reza Kheradmand

Abstract We demonstrate a novel, label-free and real-time tunable infrared biosensor by employing surface-plasmon polaritons in asymmetric Mach-Zehnder interferometer. The waveguides cladding in the Mach-Zehnder interferometer is made of lossy media with positive and negative electromagnetic susceptibilities, including metamaterial, metal and graphene. The core consists of dielectric media. We introduce two configurations for our biosensor structure. First configuration is an open-path structure and the second one consists of a sample housing made of a silicon layer around the structure. We also present a tunable biosensor by applying a gate voltage to the graphene in the structure. We employ three different cancerous cells, including cervical, breast and basal, as samples to examine the capabilities of the biosensor. Our biosensor structure is highly sensitive, compared to the existing biosensors in the literature, with the sensitivity for basal cancer cell of 1034THz/RIU. The proposed biosensor structure is compact and easy to fabricate with applications in biomedical sensing and environmental control to detect water pollutants.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 738
Author(s):  
Jan Gimsa

A new expression for the dielectrophoresis (DEP) force is derived from the electrical work in a charge-cycle model that allows the field-free transition of a single object between the centers of two adjacent cubic volumes in an inhomogeneous field. The charging work for the capacities of the volumes is calculated in the absence and in the presence of the object using the external permittivity and Maxwell-Wagner’s mixing equation, respectively. The model provides additional terms for the Clausius-Mossotti factor, which vanish for the mathematical boundary transition toward zero volume fraction, but which can be interesting for narrow microfluidic systems. The comparison with the classical solution provides a new perspective on the notorious problem of electrostatic modeling of AC electrokinetic effects in lossy media and gives insight into the relationships between active, reactive, and apparent power in DEP force generation. DEP moves more highly polarizable media to locations with a higher field, making a DEP-related increase in the overall polarizability of suspensions intuitive. Calculations of the passage of single objects through a chain of cubic volumes show increased overall effective polarizability in the system for both positive and negative DEP. Therefore, it is proposed that DEP be considered a conditioned polarization mechanism, even if it is slow with respect to the field oscillation. The DEP-induced changes in permittivity and conductivity describe the increase in the overall energy dissipation in the DEP systems consistent with the law of maximum entropy production. Thermodynamics can help explain DEP accumulation of small objects below the limits of Brownian motion.


2021 ◽  
Vol 11 (4) ◽  
pp. 1862
Author(s):  
Yerim Oh ◽  
Dongkwon Choi ◽  
Jae-Yeong Lee ◽  
Wonbin Hong

A Wheeler method for the evaluation of the radiation efficiency of submerged antennas within lossy media is presented and demonstrated for the first time in the literature. Extensive investigations have been devised by empirical and simulation methods. Normal-mode helical antenna (NMHA) was first designed and fabricated to exemplify a real-life application at the UHF band (0.3 to 3 GHz). The antenna under test (AUT) was evaluated within an artificial lossy material using a series of Wheeler caps featuring different radii to study the validity of this method. The error between the experimental and simulation radiation efficiency is below 3% near the theoretical radian length. The presented measurement method of radiation efficiency without any essential measurement facilities or accessories could be a promising candidate for fast and accurate evaluation for any wire-type antenna submerged within lossy media.


2021 ◽  
Vol 21 (1) ◽  
pp. 60-63
Author(s):  
Seung-Yeup Hyun

For the thin-wire (TW) finite-difference time-domain (FDTD) analysis of lossy insulated antennas surrounded by lossy media, an improved discrete-time boundary condition (DTBC) at the interface is proposed here. In previous TW-FDTD techniques, the DTBC formulations on the material discontinuity between the lossy insulation and lossy surrounding media were derived from the dielectric constitutive relation under the uniform field approximation (UFA) over each time step. In this paper, to achieve higher accuracy, an improved DTBC is formulated from Maxwell’s equations under the linear field approximation (LFA) and subsequently corrected in the TW-FDTD update equation. By comparing the input impedances of Teflon-insulated cylindrical monopole antennas located in wet soils, we show that the proposed approach provides higher accuracy than previous techniques.


Sign in / Sign up

Export Citation Format

Share Document