An Experimental Study of R134a Condensation Heat Transfer in Horizontal Smooth and Enhanced Tubes

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Wei Li ◽  
Yu Guo ◽  
Zong-Bao Gu ◽  
Xiang Ma ◽  
Zahid Ayub ◽  
...  

Abstract In this paper, the condensation heat transfer characteristics of R134a inside enhanced tubes using two types of surface structures with different materials were investigated, which were then compared with plain tubes under the same test conditions. The enhanced tubes were: 1EHTa tube with dimpled and petal arrays structure and 1EHTb tube with protrusion and similar petal arrays structure. The experiment was conducted for a mass flux ranging from 100 to 200 kg m−2 s−1 with saturation temperature of 318.15 K. The inlet and outlet vapor qualities were fixed at 0.8 and 0.2, respectively. The test tubes had the same outer diameter of 12.7 mm. Results showed that the dimpled and protruded surface tubes enhanced the convection condensation heat transfer and the heat transfer coefficient was 1.4–1.6 times higher than that of the smooth tube. Heat transfer enhancement of the 1EHTa and 1EHTb tube was mainly due to the complex roughness surface structures that created swirling and increased the interface turbulence. The condensation heat transfer coefficient increased slightly with increasing mass flux. The pressure drop penalty was found to increase as mass flux increased. Compared with the smooth tube, the pressure drop of Cu-1EHTa tube, SS-1EHTa tube, and Cu-1EHTb tube were 1.15, 1.21, and 1.14 of smooth tube, respectively. Enhanced tubes exhibited higher performance factors (PFs) compared to the smooth tube. The average PF was 1.3–1.5. A new correlation of heat transfer coefficient has been developed within ±15% error band.

Author(s):  
Yu Guo ◽  
Zong-bao Gu ◽  
Zahid Ayub ◽  
Wei Li ◽  
Xiang Ma ◽  
...  

Abstract In this paper, the condensation heat transfer characteristics of R134a inside enhanced tubes using two type of surface structures with different materials was investigated, which were then compared with plain tubes under the same test conditions. The enhanced tubes were: 1EHTa tube with dimpled and petal arrays structure and 1EHTb tube with protrusion and similar petal arrays structure. The experiment was conducted for a mass flux ranging from 100 to 200 kg m−2 s−1 with saturation temperature of 318 K. The inlet and outlet vapor qualities were fixed at 0.8 and 0.2, respectively. The test tubes had the same outer diameter of 12.7 mm. Results showed that the dimpled and protruded surface tubes enhanced the convection condensation heat transfer and the heat transfer coefficient was 1.4 to 1.6 times higher than that of the smooth tube. Heat transfer enhancement of the 1EHTa and 1EHTb tube was mainly due to the complex roughness surface structures that created swirling and increased the interface turbulence. Enhanced tubes exhibited higher performance factors compared to the smooth tube. The average performance factor was 1.3–1.5. As the flow rate increases, there is no significant increase in the condensation heat transfer coefficient. The pressure drop penalty increased with mass flux. Compared with smooth tube, the pressure drop penalty of enhanced tube was larger.


Author(s):  
Zeguan Dong ◽  
Jianghui Zhang ◽  
Zhen Li ◽  
Yan He ◽  
David J. Kukulka ◽  
...  

Abstract Single-phase and flow condensation experiments were performed using refrigerant R410A in the outer annular region of horizontal enhanced tube with different enhanced surfaces at a saturation temperature of 45°C in the range of mass flux 44.43–102.23kg/(m2s). The vapor quality ranges from 0.8 to 0.2. The outer diameters of the tubes are all 19.05mm, but the inner diameters are slightly different due to different surface structures. The surface structures of the three enhanced tubes are fins(EHT1 tube), toothed structures (EHT2 tube) and fine cavities(EHT3 tube) of different sizes and densities. Among them, the EHT3 tube has internal threads. Wilson diagram method was used to determine the enhancement ratio of the water side heat transfer coefficient of EHT3 tube. It was found that the pressure drop increased with the increase of mass flux, while the heat transfer coefficient showed different trends, and the smooth tube was always the lowest of the four tubes. A comprehensive evaluation factor α combining heat transfer enhancement factor (EF) and pressure drop penalty factor (PF) was defined, in which EHT2 tube (1.38–1.75) was the largest, with strong heat transfer capacity and small pressure drop, so the condensing heat transfer capacity of EHT2 tube was the best.


2013 ◽  
Vol 668 ◽  
pp. 603-607
Author(s):  
Jian Sheng Wang ◽  
Yan Zhe Li

At present, researchers pay close attention to heat transfer enhancement, and many new surface structures are developed. Two kinds of new condensation enhanced tubes with machined surface, namely NO.1 and NO.2, are put forward. The experimental results show that the enhanced tubes can improve condensation heat transfer evidently, which is due to the special internal and external surface structures. With water vapor as condensation medium, the enhancement ratios of total heat transfer coefficient (k) are 1.6-2.4 and 1.47-1.8 comparing with smooth tube, respectively, and the ratios of outside condensation heat transfer coefficient (ho) are 5.67-6.67 and 3-4 correspondingly. With alcohol vapor as condensation medium, the average enhancement ratios of k are 3 and 2 times as great as that of smooth tube, and the ratios of ho are 3-4.25 and 2.25-3.5 correspondingly.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Weiyu Tang ◽  
Wei Li

Abstract An experimental investigation into heat transfer characteristics during condensation on two horizontal enhanced tubes (EHTs) was conducted. All the tested EHTs s have similar geometries with an outer diameter of 12.7 mm, and a plain tube was also tested for comparison. Investigated enhanced surfaces consist of dimples, protrusions, and grooves, which may produce more flow turbulence and enhanced the liquid drainage effect. The effects of mass fluxes and vapor quality were compared and analyzed. Test conditions were as follows: saturation temperature fixed at 45 °C, mass flux varying from 100 to 200 kg m−2 s−1, and vapor quality ranging from 0.3 to 0.8. The heat transfer coefficient was presented, and the results show that the proposed enhanced surfaces seem to have worse performance than the conventional tubes when the mass flux is less than 150 kg m−2 s−1, while one of the enhanced tubes (2EHT-1) produce an enhanced ratio of 1.03–1.14 when G = 200 kg m−2 s−1. Besides, it was found that the heat transfer coefficient increases with increasing vapor quality, which can be attributed to the increasing diffusion resistance. Mass flux seems to have little effect on the heat transfer performance of smooth tubes, while that of 1EHT increases obviously with increasing mass flux, especially for high vapor qualities.


Author(s):  
Wei Li ◽  
Chuancai Zhang ◽  
Zhichuan Sun ◽  
Zhichun Liu ◽  
Lianxiang Ma ◽  
...  

Experimental investigation was performed to measure the evaporation heat transfer coefficients of R410A inside three three-dimensional enhanced tubes (1EHT-1, 1EHT-2 and 4LB). The inner and outer enhanced surface of the 4LB tube is composed by arrays of grooves and square pits, while 1EHT-1 tube and 1EHT-2 tube consist of longitudinal ripples and dimples of different depths. All these tubes have an inner diameter of 8.32 mm and an outer diameter of 9.52 mm. Experiment operational conditions are conducted as follows: the saturation temperature is 279 K, the vapor quality ranges from 0.2 to 0.8, and the mass flux varies from 160 kg/(m2·s) to 380 kg/(m2·s). With the mass flux increasing, the heat transfer coefficient increases accordingly. The heat transfer coefficient of 1EHT-2 is the highest of all three tubes, and that of 1EHT-1 is the lowest. The heat transfer coefficient of 4LB ranks between the 1EHT-1 and 1EHT-2 tube. The reason is that the heat transfer areas of the 1EHT-2 and 4LB tube are larger than that of 1EHT-1 and interfacial turbulence is enhanced in 1EHT-2.


2017 ◽  
Vol 25 (03) ◽  
pp. 1750027 ◽  
Author(s):  
M. Mostaqur Rahman ◽  
Keishi Kariya ◽  
Akio Miyara

Experiments on condensation heat transfer and adiabatic pressure drop characteristics of R134a were performed inside smooth and microfin horizontal tubes. The tests were conducted in the mass flux range of 50[Formula: see text]kg/m2s to 200[Formula: see text]kg/m2s, vapor quality range of 0 to 1 and saturation temperature range of 20[Formula: see text]C to 35[Formula: see text]C. The effects of mass velocity, vapor quality, saturation temperature, and microfin on the condensation heat transfer and frictional pressure drop were analyzed. It was discovered that the local heat transfer coefficients and frictional pressure drop increases with increasing mass flux and vapor quality and decreasing with increasing saturation temperature. Higher heat transfer coefficient and frictional pressure drop in microfin tube were observed. The present experimental data were compared with the existing well-known condensation heat transfer and frictional pressure drop models available in the open literature. The condensation heat transfer coefficient and frictional pressure drop of R134a in horizontal microfin tube was predicted within an acceptable range by the existing correlation.


Author(s):  
Yan Yan ◽  
Jixian Dong ◽  
Tong Ren ◽  
Shiyu Feng

In this study, the condensation heat transfer coefficient and pressure drop of steam are obtained in small rectangular tubes with different aspect ratios. The experiments were carried out on three rectangular tubes with aspect ratios of 1:2, 1:3 and 1:5, with mass flux between 25 and 45 kg/m2s, and vapor qualities between 0.1 and 0.8. The experimental data were analyzed to determine the effect of vapor quality, mass flux, and aspect ratio on the heat transfer coefficient and pressure drop. The results showed that the effect of aspect ratio on condensation heat transfer coefficient appears to be dependent on the flow pattern. For stratified flow, the condensation heat transfer coefficient increases as the mass flux increases. For annular flow, the condensation heat transfer coefficient hardly changed. The pressure drop always increases as the aspect ratio increases. Previous studies on round tube heat transfer and pressure drop correlations have not successfully predicted the small rectangular tube data; therefore, modified Shah correlation and Lockhart & Martinelli correlation are proposed, which predict the data with 20% and 23% RMS error, respectively.


Author(s):  
Suriyan Laohalertdecha ◽  
Somchai Wongwises

The effects of pitch and depth on the condensation heat transfer of R-134a flowing inside corrugated tubes are experimentally investigated. The test section is a horizontal tube-in-tube heat exchanger. The refrigerant flows in the inner tube and the water flows in the annulus. The length of heat exchanger is 2 m. A smooth tube and corrugated tubes having inner diameters of 8.7 mm are used as an inner tube. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm. The effects of corrugation pitch and depth on tube wall temperature, heat transfer coefficient and frictional pressure drop are discussed. The results illustrate that the maximum heat transfer coefficient and frictional pressure drop obtained from the corrugated tube are up to 50% and 70% higher than those obtained from the smooth tube, respectively.


Author(s):  
Xiao-peng Zhou ◽  
Jian-jun Sun ◽  
Si-pu Guo ◽  
Sun Zhichuan ◽  
Wei Li

An experimental investigation was performed for evaporation and condensation characteristics inside smooth tube, herringbone tube and EHT tube with the same outer diameter 12.7 mm, refrigerant are R22 and R410a. Mass flux are 60–140 kg/m2s, 81–178.5 kg/m2s, for evaporation and condensation respectively. The evaporation saturation temperature is 6°C, with inlet and outlet vapor qualities of 0.1 and 0.9, respectively. The condensation saturation temperature is 47°C, with inlet and outlet vapor qualities of 0.8 and 0.2, respectively. EHT tube has best evaporating performance for both R22 and R410a. Herringbone tube is also batter than smooth tube. Evaporation heat transfer coefficient increases with mass flux increasing obviously. Pressure drop of R22 evaporation in EHT tube is the highest, herringbone tube is a little higher than in smooth tube. Herringbone tube has highest condensation heat transfer coefficient, about 3 and 2.3 times that of smooth tube for R22 and R410a respectively. EHT tube has heat transfer coefficient about 2 and 1.8 times that of smooth tube for R22 and R410a respectively. Condensation heat transfer coefficient increases with increasing of mass flux, but very slowly, R410a flow in micro-fin tube even decreases with mass flux increasing.


Author(s):  
Kunrong Shen ◽  
Zhichuan Sun ◽  
Xiaolong Yan ◽  
Wei Li ◽  
David J. Kukulka ◽  
...  

With the current ozone depletion and global warming issues, it is critical to develop systems with better heat transfer performance and nontoxic refrigerants. An experimental investigation was performed to evaluate convective condensation and evaporation heat transfer characteristics using R410A at low mass fluxes. Experiments were conducted in a 12.0-mm O.D. horizontal smooth tube, and three enhanced tubes: 2EHT1 tube, 2EHT2 tube and 1EHT1 tube (O.D. 12.7 mm), with different sizes and shapes of dimple/protrusion and petal arrays. Refrigerant inlet quality varied in this study. Single phase experiment was conducted before the two-phase flow measurement. In-tube evaporation measurements of R410A were reported for saturation temperature at 6°C with vapor quality in the range of 0.2 to 0.9, and mass flux varied from 60 to 200 kg/m2s. Condensation tests were performed at saturation temperature of 45°C, vapor quality of 0.9 to 0.2, and mass flux of 60 to 260 kg/m2s. For evaporation with mass flux less than 200 kg/m2s, heat transfer coefficient of the 2EHT2 tube, 2EHT1 tube and 1EHT1 tube were greater than the experimental HTC (heat transfer coefficient) of smooth tube results by an average factor of 1.71, 1.69 and 1.87, respectively. Pressure drop in the 2EHT2 tube was 5% higher than the 2EHT1 tube and 1EHT1 tube. For condensation, when mass flux was less than 200 kg/m2s, the 1EHT1 tube showed obvious enhancement in heat transfer coefficient, while the pressure drop in the 1EHT1 tube was slightly 3–5% higher than that of the 2EHT1 tube and the 2EHT2 tube. In conclusion, for mass flux below 200 kg/m2s, the 1EHT1 tube presented the best heat transfer performance among others with R410A as the refrigerant.


Sign in / Sign up

Export Citation Format

Share Document