Posture-invariant 3D Human Hand Statistical Shape Model

Author(s):  
Yusheng Yang ◽  
Tianyun Yuan ◽  
Toon Huysmans ◽  
Willemijn Elkhuizen ◽  
Farzam Tajdari ◽  
...  

Abstract A high-fidelity digital representation of the human body is a key enabler for integrating humans in a digital twin. Among different parts of human body, building the model of the hand can be a challenging task due to the posture deviations among collected scans. In this paper, we proposed a posture invariant hand statistical shape model (SSM) based on 59 3D scans of human hands. First, the 3D scans were spatially aligned using a Möbius sphere-based algorithm. An articulated skeleton, which contains 20 bone segments and 16 joints, was embedded for each 3D scan. Then all scans were aligned to the same posture using the skeleton and the linear blend skinning algorithm. Three methods, i.e. Principal Component Analysis (PCA), kernel-PCA with different kernel functions, and Independent Component Analysis, were evaluated in the construction of the SSMs regarding the compactness, the generalization ability and the specificity. The PCA-based SSM was selected, where 20 principal components were used as parameters for the model. Results of the leave-one-out validation indicate that the proposed model was able to fit a given 3D scan of the human hand at an accuracy of 1.21 ± 0.14 mm. Experiment results also indicated that the proposed SSM outperforms the SSM that was built on the scans without posture correction. It is concluded that the proposed posture correction approach can effectively improve the accuracy of the hand SSM, therefore enables its wide usage in human integrated digital twin applications.

Author(s):  
Jeroen Van Houtte ◽  
Kristina Stanković ◽  
Brian G. Booth ◽  
Femke Danckaers ◽  
Véronique Bertrand ◽  
...  

2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Najah Hraiech ◽  
Christelle Boichon ◽  
Michel Rochette ◽  
Thierry Marchal ◽  
Marc Horner

In this paper, we describe a method for automatically building a statistical shape model by applying a morphing method and a principal component analysis (PCA) to a large database of femurs. One of the major challenges in building a shape model from a training data set of 3D objects is the determination of the correspondence between different shapes. In our work, we solve this problem by using a morphing method. The morphing method consists of deforming the same template mesh over a large database of femur geometries, which results in isotopological meshes and one to one correspondences; i.e., the resulting meshes have the same number of nodes, the same number of elements, and the same connectivity in all morphed meshes. By applying the morphing-based registration followed by PCA to a large database of femurs, we demonstrate that the method can be used to derive a low dimensional representation of the main variabilities of the femur geometry.


Sign in / Sign up

Export Citation Format

Share Document