scholarly journals Numerical Prediction of the Dynamic Behaviour of Turbulent Diffusion Flames

Author(s):  
Dieter Bohn ◽  
Gregor Deutsch ◽  
Uwe Krüger

Environmental compatibility requires low emission burners for gas turbine power plants as well as for jet engines. In the past significant progress has been made developing low NOx and CO burners. Unfortunately these burners often have a more pronounced tendency than conventional burner designs to produce combustion driven oscillations The oscillations may be excited to such an extent that pronounced pulsation may possibly occur; this is associated with a risk of engine failure. The stability of a burner system can be investigated by means of a stability analysis under the assumption of acoustical behaviour. The problem with all these algorithms is the transfer function of the flame. A new method is presented here to predict the dynamic flame behaviour by means of a full Navier-Stokes-simulation of the complex combustion process. The first step is to get a steady-state solution of a flame configuration. After that a transient simulation follows with a sudden change in the mass flow rate at the flame inlet. The time-dependent answer of the flame to this disturbance is then transformed into the frequency space by a Laplace Transformation. This leads, in turn, to the frequency response representing the dynamic behaviour of the flame. In principle, this method can be adapted for both diffusion as well as premixed flame systems. However, due to the fact that diffusion flames are more controlled by the mixing process than by the chemical kinetic, the method has first been used for the prediction of the dynamic behaviour of turbulent diffusion flames. The combustion has been modelled by a mixed-is-burnt model. The influence of the turbulence has been taken into account by a modified k-ε-model and the turbulence influences the combustion rate by presumed probability density functions (pdf). The steady-state as well as the transient results have been compared with experimental data for two different diffusion flame configurations. Although the burner configuration is relatively complex, the steady state results collaborate very well with the experiments for velocity, temperature and species distribution. The most important result is that the heat release which drives the oscillations can be modelled sufficiently accurately. The effect of using different pdf-models has been discussed and the best model has been used for the transient calculations of the dynamic flame behaviour. The results for the frequency response of the flame are very encouraging. The principal behaviour of the flame — higher order time element with a delay time — can be predicted with sufficient precision. In addition, the qualitative results collaborate fairly well with the experiments.

1998 ◽  
Vol 120 (4) ◽  
pp. 713-720 ◽  
Author(s):  
D. Bohn ◽  
G. Deutsch ◽  
U. Kru¨ger

Environmental compatibility requires low-emission burners for gas turbine power plants as well as for jet engines. In the Past, significant progress has been made developing low NOx and CO burners. Unfortunately, these burners often have a more pronounced tendency than conventional burner designs to produce combustion driven oscillations. The oscillations may be excited to such an extent that pronounced pulsation may possibly occur; this is associated with a risk of engine failure. The stability of a burner system can be investigated by means of a stability analysis under the assumption of acoustical behavior. The problem with all these algorithms is the transfer function of the flame. A new method is presented here to predict the dynamic flame behavior by means of a full Navier-Stokes simulation of the complex combustion process. The first step is to get a steady-state solution of a flame configuration. After that a transient simulation follows with a sudden change in the mass flow rate at the flame inlet. The time-dependent answer of the flame to this disturbance is then transformed into the frequency space by a Laplace Transformation. This leads, in turn, to the frequency response representing the dynamic behavior of the flame. In principle, this method can be adapted for both diffusion as well as premixed flame systems. However, due to the fact that diffusion flames are more controlled by the mixing process than by the chemical kinetic, the method has first been used for the prediction of the dynamic behavior of turbulent diffusion flames. The combustion has been modelled by a mixed-is-burnt model. The influence of the turbulence has been taken into account by a modified k-ε model and the turbulence influences the combustion rate by presumed probability density functions (pdf). The steady state as well as the transient results have been compared with experimental data for two different diffusion flame configurations. Although the burner configuration is relatively complex, the steady-state results collaborate very well with the experiments for velocity, temperature, and species distribution. The most important result is that the heat release that drives the oscillations can be modeled sufficiently accurately. The effect of using different pdf models has been discussed and the best model has been used for the transient calculations of the dynamic flame behavior. The results for the frequency response of the flame are very encouraging. The principal behavior of the flame—higher order time element with a delay time—can be predicted with sufficient precision. In addition, the qualitative results collaborate fairly well with the experiments.


Author(s):  
Uwe Krüger ◽  
Stefan Hoffmann ◽  
Werner Krebs ◽  
Hans Judith ◽  
Dieter Bohn ◽  
...  

Environmental compatibility requires low emission burners for gas turbine power plants as well as for jet engines. In the past significant progress has been made developing low NOx and CO burners by introducing lean premixed techniques. Unfortunately these burners often have a more pronounced tendency than conventional burner designs to produce combustion driven oscillations. The oscillations may be excited to such an extent that strong pulsation may possibly occur; this is associated with a risk of engine failure and higher NOx emissions. In order to describe the acoustical behaviour of the complete burner system the determination of the transfer function of the flame itself is crucial. Using a new method which was presented by Bohn, Deutsch and Krüger (1996) and Bohn, Li, Krüger and Matousckek (1997), the dynamic flame behaviour can be predicted by means of a full Navier-Stokes-simulation of the complex combustion process for the steady-state as well as for the transient situation. This method has been successfully used by the authors to obtain the frequency response of turbulent diffusion flames and laminar premixed flames. For the application in modern gas turbines the influence of turbulence on the dynamic behaviour of premixed flames is of big interest. Therefore, this paper presents numerical studies of a turbulent premixed flame configuration for which experimental data is available in the literature. Two different combustion models have been used for the steady-state as well as for the transient calculations. With the improved model, which takes into account the chemical kinetics and the interaction between turbulence and kinetics, good agreement has been found for the steady-state results and for the frequency response of the flame.


Author(s):  
Dieter Bohn ◽  
Yuhong Li ◽  
Gero Matouschek ◽  
Uwe Krüger

Environmental compatibility requires low emission burners for both gas turbine power plants and jet engines. In the past, significant progress has been made in the development of low NOx and CO burners by introducing lean premixed techniques. Unfortunately these burners often have a more pronounced tendency than conventional burner designs to produce combustion driven oscillations. The oscillations may be excited to such an extent that strong pulsation may occur, and this is associated with a risk of engine failure. In order to describe the acoustical behaviour of the complete burner system, it is crucial to determine the unit function response of the flame itself. Using a new method which was presented in 1996 by Bohn et al. [1] the dynamic flame behaviour can be predicted by means of a full Navier-Stokes-simulation of the complex combustion process for both the steady-state and transient case. The authors have successfully used this method to obtain the frequency response of turbulent diffusion flames which are mainly controlled by the mixing process. Chemical kinetics become dominant for premixed flames. Therefore, the combustion process of a premixed methane-air mixture is modelled using a systematically reduced 6-step reaction mechanism which takes account of a set of 25 elementary reactions. This reduced mechanism was implemented in the 3D-Navier-Stokes solver in order to perform a combined flow and combustion computation. The dynamic combustion process of a laminar premixed methane flame in a matrix burner configuration has been investigated. At first, the steady-state combustion process was simulated using the code described above. The results are compared with experimental data. Very good agreement over a wide range of equivalence ratios has been found for quantities such as laminar burning velocity or adiabatic flame temperature. The steady state results are then used as an operating point from which the transient flame behaviour after a sudden jump in the mass flow at the burner inlet has been obtained. Finally, these data lead to the unit function response which can be transferred into frequency space by a Laplace transformation. The frequency response of the premixed methane flame obtained by a Navier-Stokes simulation has been compared with both experimental as well as analytical solutions. It must be stressed that a pure delay time element which is often used as an analytical formulation is not suitable to describe the dynamic flame behaviour in detail. The frequency response shows the characteristics of a higher order delay time element with several important details. Parametric studies on the influence of equivalence ratio and the flow pattern of the internal burner fluid flow which are of interest for gas turbine applications, show the importance of the detailed knowledge of the dynamic flame behaviour for the stability analysis of a gas turbine combustor.


AIAA Journal ◽  
1991 ◽  
Vol 29 (6) ◽  
pp. 932-935 ◽  
Author(s):  
T. Neill ◽  
I. M. Kennedy

2014 ◽  
Vol 186 (10-11) ◽  
pp. 1370-1391 ◽  
Author(s):  
Sylvain Serra ◽  
Vincent Robin ◽  
Arnaud Mura ◽  
Michel Champion

Author(s):  
Sebastian Valencia ◽  
Sebastián Ruiz ◽  
Javier Manrique ◽  
Cesar Celis ◽  
Luís Fernando Figueira da Silva

1989 ◽  
Vol 55 (510) ◽  
pp. 517-522 ◽  
Author(s):  
Kohoichi SUZUKI ◽  
Kinichi TORIKAI ◽  
Kiyoshi SAKUMA

Sign in / Sign up

Export Citation Format

Share Document