A Review of the Developments in the Boundary Element Method for Time-Domain Elastodynamics

Author(s):  
Igor Kaljević ◽  
Sunil Saigal

Abstract The boundary element formulations for two-dimensional time-domain transient elastodynamics are reviewed in this paper. Several improvements of present formulations regarding the numerical integration of boundary element kernels and analysis of symmetric domains are presented. The deterministic transient formulations are next applied for analyzing problems with spatially random boundary conditions. The deficiencies of the present formulations are summarized and possible improvements are suggested.

1994 ◽  
Vol 61 (2) ◽  
pp. 264-269 ◽  
Author(s):  
A. Nagarajan ◽  
E. Lutz ◽  
S. Mukherjee

This paper presents a novel application of the boundary element method to solve problems in linear elasticity. The new method is called the Boundary Contour Method. This approach requires no numerical integration at all for two-dimensional problems and numerical evaluation of line integrals only for three-dimensional problems; even for curved line or surface boundary elements of arbitrary shape! Numerical results are presented for some two-dimensional problems.


Author(s):  
D.Y. Ivanov ◽  

Here we consider the initial-boundary value problems in a homogeneous cylindrical domain YI Ω ×+ ( Ω+ is an open two-dimensional bounded simply connected domain with a boundary 5 ∂Ω ∈C , 2 \ Ω≡ Ω − + R is the open exterior of the domain Ω+ , [0, ] YI ≡ Y is the height of the cylinder) on a time interval [0, ] TI ≡ T . The initial conditions and the boundary conditions on the bases of the cylinder are zero, and the boundary conditions on the lateral surface of the cylinder are given by the function 1 2 wx x yt ( , , ,) ( 1 2 (, ) x x ∈∂Ω , Y y ∈ I , T t I ∈ ). An approximate solution of such problems is obtained through the combined use of the Fourier method and the collocation boundary element method based on piecewise quadratic interpolation (PQI). The solution to the problem in the cylinder is expanded in a Fourier series in terms of eigenfunctions of the operator 2 By yy ≡ ∂ with the corresponding zero boundary conditions. The coefficients of such a Fourier series are solutions of problems for two-dimensional heat equations 2 2 t ∇ =∂ + u u ku . With a low smoothness of the functions w in the variable y, the weight of solutions at large values of k increases and the accuracy of solving the problem in the cylinder decreases. To maintain accuracy on a uniform grid, the step of discretization of the boundary function w with respect to the variable y is decreased by a factor of j. Here j is an averaged value of the quantity Y k π depending on the function w. In addition, the steps of discretization of functions ( ) 2 exp − τ k with respect to the variable τ in domains τ≤πT k are reduced by a factor of 2 2 k π . The steps in the remaining ranges of values τ and the steps by the other variables remain unchanged. The approximate solutions obtained on the basis of this procedure converge stably to exact solutions in the 2 ( ) LI I Y T × -norm with a cubic velocity uniformly with respect to sets of functions w, bounded by norm of functions with low smoothness in the variable y, uniformly along the length of the generatrix of the cylinder Y , and uniformly in the domain Ω . The latter is also associated with the use of PQI along the curve ∂Ω over the variable 2 2 ρ≡ − r d , which is carried out at small values of r ( d and r are the distances from the observed point of the domain Ω to the boundary ∂Ω and to the current point of integration along ∂Ω , respectively). The theoretical conclusions are confirmed by the results of the numerical solution of the problem in a circular cylinder, where the dependence of the boundary functions w on y is given by the normalized eigenfunctions of the differential operator By which vary in a sufficiently large range of values of k .


Author(s):  
Jayantheeswar Venkatesh ◽  
Anders Thorin ◽  
Mathias Legrand

Finite elements in space with time-stepping numerical schemes, even though versatile, face theoretical and numerical difficulties when dealing with unilateral contact conditions. In most cases, an impact law has to be introduced to ensure the uniqueness of the solution: total energy is either not preserved or spurious high-frequency oscillations arise. In this work, the Time Domain Boundary Element Method (TD-BEM) is shown to overcome these issues on a one-dimensional system undergoing a unilateral Signorini contact condition. Unilateral contact is implemented by switching between free boundary conditions (open gap) and fixed boundary conditions (closed gap). The solution method does not numerically dissipate energy unlike the Finite Element Method and properly captures wave fronts, allowing for the search of periodic solutions. Indeed, TD-BEM relies on fundamental solutions which are travelling Heaviside functions in the considered one-dimensional setting. The proposed formulation is capable of capturing main, subharmonic as well as internal resonance backbone curves useful to the vibration analyst. For the system of interest, the nonlinear modeshapes are piecewise-linear unseparated functions of space and time, as opposed to the linear modeshapes that are separated half sine waves in space and full sine waves in time.


Sign in / Sign up

Export Citation Format

Share Document