CMM Measurement Planning in FAPPS

Author(s):  
Sungdo Ha ◽  
Inshik Hwang ◽  
Myon Woong Park ◽  
Hyung-Min Rho

Abstract FAPPS (Feature-based Automatic Process Planning System) is developed as a comprehensive metal cutting process planning system operated in PC environments. It can recognize the machining features automatically from a given 3D part design model, and then generates operation sheets, divided process drawings, NC codes, and inspection sheet. It consists of the following modules: tolerance input module for menu-driven input of tolerances, feature recognition module for automatic recognition of pre-defined machining features and compound features, process planning module for rule based determination of machining processes, divided process drawing module for automatic generation of divided process drawings, operation planning module for rule based generation of specific operation plans, and measurement planning module for automatic generation of CMM measurement plans. The CMM measurement planning in FAPPS uses both geometric information and tolerance information from CAD files in order to determine measurement surfaces, number and positions of measurement points, and measurement sequences for inspecting machined parts. The measurement plan is represented in DMIS format for automated measurements using CMM’s. The measurement planning module that is realized in FAPPS is explained in this paper with the developed algorithms. Fuzzy logic calculation is used to determine the number of measurement points and geometric consideration for selecting measurement positions is performed.

Author(s):  
M. K. Muju ◽  
Kripa Shanker ◽  
P. K. Aherrao

Abstract This paper presents some details of design and implementation of a computerized process planning system for parts requiring milling operations. The interactive system uses generative approach of process planning. The system is capable of handling end milling, face milling and peripheral milling. The geometric programming technique is used for determining the optimal machining parameters. Emphasis is laid on the constraining equations used in the optimization model. The power equations are derived from basic metal cutting analysis. The cutter selection is automatic to some extent. The system outputs detailed process plans giving sequence of operations, optimal machining parameters, cost per piece and production rate.


2017 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Dušan Šormaz ◽  
Mayur Wakhare ◽  
Nur-Ul Arafat

Computer aided process planning is a critical link between design and manufacturing. The ready process plan in integration of design and manufacturing is always important to save manufacturing time, reduction of work in progress. This paper describes a rule based intelligent process planning system which selects necessary manufacturing processes features in the metal mechanical parts. Novel feature of this system is the use of detailed GD&T specification on both process selection and setup planning modules. Process selection module selects the necessary processes for manufacturing the hole feature that depends on feature dimensions, feature precedence, and specified geometric and dimensional tolerances. Setup planning module determines the sequences of the setups of the prismatic part on the machine tools that includes clustering and sequencing of the features in setups. This module uses rules for the following steps: tool approach direction definition, setup formation based on GD&T requirements, resolution of possible cyclic setups, setup sequencing and operation sequencing in setups. Rules can generate valid setups for both 3-axis and 4-axis milling machines. The procedures are illustrated on several examples.


2018 ◽  
Vol 84 (860) ◽  
pp. 17-00563-17-00563 ◽  
Author(s):  
Isamu NISHIDA ◽  
Taishi HIRAI ◽  
Ryuta SATO ◽  
Keiichi SHIRASE

CIRP Annals ◽  
1996 ◽  
Vol 45 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Kyu-Kab Cho ◽  
Soo-Hong Lee ◽  
Dong-Soo Chung

Author(s):  
Laurent Sabourin ◽  
François Villeneuve

Abstract This article presents the validation of a part analysis method for the creation of a process planning system for automobile prototype activity at the PSA group. The methodology presented is founded upon the division of the problem into two semi-separate sub-fields. The first consists in automatically defining the operation sequences, by the association between functional and machining features. The second one defines the sequencing of machining operations in set ups, founded upon a constraint planning strategy. The methods developed in this article have been implemented as an expert system named OMEGA.


Author(s):  
Hao Yang ◽  
Wen F. Lu

Abstract An intelligent case-based process planning system with interactive graphic simulation environment, PROCASE, is developed to demonstrate an integrated methodology of case-based process planning system. In PROCASE, both the mechanical part features and the machining operations are represented with a frame based scheme. PROCASE contains a retriever, a modifier, a simulator and a repairer. It distinguishes itself from traditional rule-based process planning systems by representing the process planning knowledge through previous process planning cases instead of production rules. It therefore can overcome some problems in the traditional rule-based expert systems. PROCASE currently resides in IRIS Indigo workstation. With a user friendly graphic environment, the generated process plans can be demonstrated vividly. This simulation environment not only serves as a good assistance in debugging, but also helps the user to be convinced of the outcomes of the reasoning of PROCASE.


Sign in / Sign up

Export Citation Format

Share Document