A Study on Contact Stress Analysis in Boundary Element Method

Author(s):  
Mehmet Çelik

Abstract A numerical approach for the solution of the contact mechanics problems has been presented using the Boundary Element Method. An automatic load distribution technique is implemented in a contacting element using isoparametric quadratic elements. This type of element is shown to be excellent in modeling regions of rapidly varying stresses in the contact areas. The superposition method is applied to interference contact problems mostly used in engineering design of the systems. The work is focused on the analysis of the loading in a roller bearing housing.

2005 ◽  
Vol 73 (4) ◽  
pp. 525-535 ◽  
Author(s):  
Xiangqiao Yan

This paper presents a numerical approach to modeling a general system containing multiple interacting cracks and voids in an infinite elastic plate under remote uniform stresses. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks and voids, the original problem is divided into a homogeneous problem (the one without cracks and voids) subjected to remote loads and a multiple void-crack problem in an unloaded body with applied tractions on the surfaces of cracks and voids. Thus the results in terms of the stress intensity factors (SIFs) can be obtained by considering the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author. Test examples are included to illustrate that the numerical approach is very simple and effective for analyzing multiple crack/void problems in an infinite elastic plate. Specifically, the numerical approach is used to study the microdefect-finite main crack linear elastic interaction. In addition, complex crack problems in infinite/finite plate are examined to test further the accuracy and robustness of the boundary element method.


2010 ◽  
Vol 20-23 ◽  
pp. 76-81 ◽  
Author(s):  
Hai Lian Gui ◽  
Qing Xue Huang

Based on fast multipole boundary element method (FM-BEM) and mixed variational inequality, a new numerical method named mixed fast multipole boundary element method (MFM-BEM) was presented in this paper for solving three-dimensional elastic-plastic contact problems. Mixed boundary integral equation (MBIE) was the foundation of MFM-BEM and obtained by mixed variational inequality. In order to adapt the requirement of fast multipole method (FMM), Taylor series expansion was used in discrete MBIE. In MFM-BEM the calculation time was significant decreased, the calculation accuracy and continuity was also improved. These merits of MFM-BEM were demonstrated in numerical examples. MFM-BEM has broad application prospects and will take an important role in solving large-scale engineering problems.


Sign in / Sign up

Export Citation Format

Share Document