penalty method
Recently Published Documents


TOTAL DOCUMENTS

560
(FIVE YEARS 125)

H-INDEX

35
(FIVE YEARS 4)

Author(s):  
Zhaosong Lu ◽  
Zhe Sun ◽  
Zirui Zhou

In this paper, we consider a class of structured nonsmooth difference-of-convex (DC) constrained DC programs in which the first convex component of the objective and constraints is the sum of a smooth and a nonsmooth function, and their second convex component is the supremum of finitely many convex smooth functions. The existing methods for this problem usually have a weak convergence guarantee or require a feasible initial point. Inspired by the recent work by Pang et al. [Pang J-S, Razaviyayn M, Alvarado A (2017) Computing B-stationary points of nonsmooth DC programs. Math. Oper. Res. 42(1):95–118.], in this paper, we propose two infeasible methods with a strong convergence guarantee for the considered problem. The first one is a penalty method that consists of finding an approximate D-stationary point of a sequence of penalty subproblems. We show that any feasible accumulation point of the solution sequence generated by such a penalty method is a B-stationary point of the problem under a weakest possible assumption that it satisfies a pointwise Slater constraint qualification (PSCQ). The second one is an augmented Lagrangian (AL) method that consists of finding an approximate D-stationary point of a sequence of AL subproblems. Under the same PSCQ condition as for the penalty method, we show that any feasible accumulation point of the solution sequence generated by such an AL method is a B-stationary point of the problem, and moreover, it satisfies a Karush–Kuhn–Tucker type of optimality condition for the problem, together with any accumulation point of the sequence of a set of auxiliary Lagrangian multipliers. We also propose an efficient successive convex approximation method for computing an approximate D-stationary point of the penalty and AL subproblems. Finally, some numerical experiments are conducted to demonstrate the efficiency of our proposed methods.


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Mohamed-Amine Chadil ◽  
Stéphane Vincent ◽  
Jean-Luc Estivalèzes

Particle-Resolved simulations (PR-DNS) have been conducted using a second order implicit Viscous Penalty Method (VPM) to study the heat transfer between a set of particles and an incompressible carrier fluid. A Lagrange extrapolation coupled to a Taylor interpolation of a high order is utilized to the accurate estimate of heat transfer coefficients on an isolated sphere, a fixed Faced-Centered Cubic array of spheres, and a random pack of spheres. The simulated heat transfer coefficients are compared with success to various existing Nusselt laws of the literature.


2021 ◽  
Vol 89 (2) ◽  
Author(s):  
Sofia Eriksson

AbstractThe scalar, one-dimensional advection equation and heat equation are considered. These equations are discretized in space, using a finite difference method satisfying summation-by-parts (SBP) properties. To impose the boundary conditions, we use a penalty method called simultaneous approximation term (SAT). Together, this gives rise to two semi-discrete schemes where the discretization matrices approximate the first and the second derivative operators, respectively. The discretization matrices depend on free parameters from the SAT treatment. We derive the inverses of the discretization matrices, interpreting them as discrete Green’s functions. In this direct way, we also find out precisely which choices of SAT parameters that make the discretization matrices singular. In the second derivative case, it is shown that if the penalty parameters are chosen such that the semi-discrete scheme is dual consistent, the discretization matrix can become singular even when the scheme is energy stable. The inverse formulas hold for SBP-SAT operators of arbitrary order of accuracy. For second and fourth order accurate operators, the inverses are provided explicitly.


Sign in / Sign up

Export Citation Format

Share Document