homogeneous problem
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yanli Shao ◽  
Jingru Zhao ◽  
Xingqi Wang ◽  
Weiwei Wu ◽  
Jinglong Fang

As the scale and complexity of software increase, software security issues have become the focus of society. Software defect prediction (SDP) is an important means to assist developers in discovering and repairing potential defects that may endanger software security in advance and improving software security and reliability. Currently, cross-project defect prediction (CPDP) and cross-company defect prediction (CCDP) are widely studied to improve the defect prediction performance, but there are still problems such as inconsistent metrics and large differences in data distribution between source and target projects. Therefore, a new CCDP method based on metric matching and sample weight setting is proposed in this study. First, a clustering-based metric matching method is proposed. The multigranularity metric feature vector is extracted to unify the metric dimension while maximally retaining the information contained in the metrics. Then use metric clustering to eliminate metric redundancy and extract representative metrics through principal component analysis (PCA) to support one-to-one metric matching. This strategy not only solves the metric inconsistent and redundancy problem but also transforms the cross-company heterogeneous defect prediction problem into a homogeneous problem. Second, a sample weight setting method is proposed to transform the source data distribution. Wherein the statistical source sample frequency information is set as an impact factor to increase the weight of source samples that are more similar to the target samples, which improves the data distribution similarity between the source and target projects, thereby building a more accurate prediction model. Finally, after the above two-step processing, some classical machine learning methods are applied to build the prediction model, and 12 project datasets in NASA and PROMISE are used for performance comparison. Experimental results prove that the proposed method has superior prediction performance over other mainstream CCDP methods.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1948
Author(s):  
Alberto Cabada ◽  
Lucía López-Somoza ◽  
Mouhcine Yousfi

In this paper, we obtain the explicit expression of the Green’s function related to a general n-th order differential equation coupled to non-local linear boundary conditions. In such boundary conditions, an n dimensional parameter dependence is also assumed. Moreover, some comparison principles are obtained. The explicit expression depends on the value of the Green’s function related to the two-point homogeneous problem; that is, we are assuming that when all the parameters involved on the boundary conditions take the value zero then the problem has a unique solution, which is characterized by the corresponding Green’s function g. The expression of the Green’s function G of the general problem is given as a function of g and the real parameters considered at the boundary conditions. It is important to note that, in order to ensure the uniqueness of the solution of the considered linear problem, we must assume a non-resonant additional condition on the considered problem, which depends on the non-local conditions and the corresponding parameters. We point out that the assumption of the uniqueness of the solution of the two-point homogeneous problem is not a necessary condition to ensure the existence of the solution of the general case. Of course, in this situation, the expression we are looking for must be obtained in a different manner. To show the applicability of the obtained results, a particular example is given.


2021 ◽  
Vol 19 (1) ◽  
pp. 690-705
Author(s):  
Lahcene Rabhi ◽  
Mohammed Al Horani ◽  
Roshdi Khalil

Abstract In this paper, we discuss the solution of the inhomogeneous conformable abstract Cauchy problem. The homogeneous problem is also studied. The analysis of conformable fractional calculus and fractional semigroups is also given. Existence, uniqueness and regularity of a mild solution for the conformable abstract Cauchy problem are studied. Applications illustrating our main abstract results are also given.


2020 ◽  
pp. 1-43
Author(s):  
Pierre Magal ◽  
Ousmane Seydi

Abstract In this paper, we extend to the non-Hille–Yosida case a variation of constants formula for a nonautonomous and nonhomogeneous Cauchy problems first obtained by Gühring and Räbiger. By using this variation of constants formula, we derive a necessary and sufficient condition for the existence of an exponential dichotomy for the evolution family generated by the associated nonautonomous homogeneous problem. We also prove a persistence result of the exponential dichotomy for small perturbations. Finally, we illustrate our results by considering two examples. The first example is a parabolic equation with nonlocal and nonautonomous boundary conditions, and the second example is an age-structured model that is a hyperbolic equation.


Author(s):  
Tukezban Jafar Hasanova ◽  
Saida Abdulali Tagieva

Simulation considered after the main seismic impacts are removed from the structure, the two-layer rod, which is in an elastic environment, is subjected to periodic longitudinal forces. In the investigated work the Bubnov”s-Galerkin method was used, numerical calculations were made. The main area of dynamic instability is built and shown in the figure, where the dotted line marks the solution of a homogeneous problem.


Author(s):  
Elie Honein ◽  
Tony Honein ◽  
Michel Najjar ◽  
Habib Rai

Abstract In this paper we present some new analytical techniques which have been recently developed to solve for problems of circular elastic inhomogeneities in anti-plane and plane elasticity. The inhomogeneities may be composed of different materials and have different radii. The matrix may be subjected to arbitrary loadings or singularities. The solution to this heterogeneous problem is sought as a transformation performed on the solution of the corresponding homogeneous problem, i.e., the problem when all the inhomogeneities are removed and the homogeneous matrix is subjected to the same loading/singularities, a procedure which has been dubbed ‘heterogenization’. In previous works, a single inhomogeneity or hole has been considered and the transformation has been shown to be purely algebraic in the antiplane case and involves differentiation of the Kolosov-Mushkelishvili complex potentials in the plane case. Universal formulas, i.e., formulas which are independent of the loading/singularities, that express the stresses at the inter-face of the inhomogeneity in terms of the stresses that would have existed at the same interface had the inhomogeneity been absent, have been be derived. The solution for a single inhomogeneity bonded to a matrix which is subjected to arbitrary loading/singularities can then in principle be used systematically in a Schwarz alternating method to obtain the solution for multiple inhomogeneities to any degree of accuracy. However alternative and innovative methods have been sought which lead to a much faster convergence and in some cases to exact expressions in terms of infinite series. The aim of this paper is to present some of the progress that has been made in this direction.


10.29007/n7rd ◽  
2018 ◽  
Author(s):  
Stephan Schulz

The greatest source of progress in automated theorem proving in the last 30 years has been the development of better search heuristics, usually based on developer experience and empirical evaluation, but increasingly also using automated optimization techniques. Despite this progress, we still know very little about proof search. We have mostly failed to identify good features for characterizing homogeneous problem classes, or for identifying interesting and relevant clauses and formulas.I propose the challenge of bringing together inductive techniques (generalization and learning) and deductive techniques to attack this problem. Hardware and software have finally evolved to a point that we can reasonably represent and analyze large proof searches and search decisions, and where we can hope to achieve order-of-magnitude improvements in the efficiency of the proof search.


Sign in / Sign up

Export Citation Format

Share Document