Multi-Stage Design Method for Practical Compliant Mechanisms by Topology and Shape Optimizations and Shape Conversion Method Utilizing Level Set Method

Author(s):  
Masakazu Kobayashi ◽  
Shinji Nishiwaki ◽  
Masatake Higashi

This paper proposes a multi-stage design method for a design of practical compliant mechanisms. The proposed method consists of topology and shape optimizations and a shape conversion method that incorporates two optimizations. In the 1st stage, an initial and conceptual compliant mechanism is created by topology optimization. In the 2nd stage, an initial model of shape optimization is created from the result of topology optimization by the shape conversion method based on the level set method. In the 3rd stage, the shape optimization yields a detailed shape of the compliant mechanism by considering non-linear deformation and stress concentration. Execution of the shape optimization after the topology optimization enables evaluation of stress concentration and large deformation effect that are normally difficult for the traditional topology optimization. On the other side, the precise conversion from the model by topology optimization to the one for the shape optimization becomes possible by the shape conversion method that is utilizing the level set method. Using the proposed multi-stage method, a practical compliant mechanism can be designed with the designer’s minimum efforts that are indications of design conditions of the topology and shape optimizations and several parameters and threshold values of the shape conversion method.

Author(s):  
Masakazu Kobayashi ◽  
Hiroshi Yamakawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

Compliant mechanisms generated by traditional topology optimization methods have linear output response, and it is difficult for traditional methods to implement mechanisms having non-linear output responses, such as nonlinear deformation or path. To design a compliant mechanism having a specified nonlinear output path, a two-stage design method based on topology and shape optimization is constructed here. In the first stage, topology optimization generates an initial and conceptual compliant mechanism based on ordinary design conditions, with “additional” constraints that are used to control the output path at the second stage. In the second stage, an initial model for the shape optimization is created, based on the result of the topology optimization, and the additional constraints are replaced by spring elements. The shape optimization is then executed, to generate a detailed shape of the compliant mechanism having the desired output path. In this stage, parameters that represent the outer shape of the compliant mechanism and the properties of spring elements are used as design variables in the shape optimization. In addition to configuration of the specified output path, executing the shape optimization after the topology optimization also makes it possible to consider the stress concentration and large displacement effects. This is an advantage offered by the proposed method, since it is difficult for traditional methods to consider these aspects, due to inherent limitations of topology optimization.


2011 ◽  
Vol 130-134 ◽  
pp. 3076-3082 ◽  
Author(s):  
Ben Liang Zhu ◽  
Xian Min Zhang

In this paper, a new level set method for topology optimization of compliant mechanisms is presented. A new formulation is developed and built in the traditional level set method to force the level set function to be close to a signed distance function during the optimal process. The validity of the method is illustrated by topology optimization of a widely studied compliant mechanism.


2007 ◽  
Vol 19 (2) ◽  
pp. 141-147
Author(s):  
Masakazu Kobayashi ◽  
◽  
Shinji Nishiwaki ◽  
Hiroshi Yamakawa ◽  
◽  
...  

Compliant mechanisms designed by traditional topology optimization have a linear output response, and it is difficult for traditional methods to implement mechanisms having nonlinear output responses, such as nonlinear deformation or path. To design a compliant mechanism having a specified nonlinear output path, we propose a two-stage design method based on topology and shape optimizations. In the first stage, topology optimization generates an initial conceptual compliant mechanism based on ordinary design conditions, with “additional” constraints used to control the output path in the second stage. In the second stage, an initial model for the shape optimization is created, based on the result of the topology optimization, and additional constraints are replaced by spring elements. The shape optimization is then executed, to generate the detailed shape of the compliant mechanism having the desired output path. At this stage, parameters that represent the outer shape of the compliant mechanism and of spring element properties are used as design variables in the shape optimization. In addition to configuring the specified output path, executing the shape optimization after the topology optimization also makes it possible to consider the stress concentration and large displacement effects. This is an advantage offered by the proposed method, because it is difficult for traditional methods to consider these aspects, due to inherent limitations of topology optimization.


Author(s):  
Piotr Fulmański ◽  
Antoine Laurain ◽  
Jean-Francois Scheid ◽  
Jan Sokołowski

A Level Set Method in Shape and Topology Optimization for Variational InequalitiesThe level set method is used for shape optimization of the energy functional for the Signorini problem. The boundary variations technique is used in order to derive the shape gradients of the energy functional. The conical differentiability of solutions with respect to the boundary variations is exploited. The topology modifications during the optimization process are identified by means of an asymptotic analysis. The topological derivatives of the energy shape functional are employed for the topology variations in the form of small holes. The derivation of topological derivatives is performed within the framework proposed in (Sokołowski and Żochowski, 2003). Numerical results confirm that the method is efficient and gives better results compared with the classical shape optimization techniques.


2005 ◽  
Vol 127 (5) ◽  
pp. 941-956 ◽  
Author(s):  
Michael Yu Wang ◽  
Shikui Chen ◽  
Xiaoming Wang ◽  
Yulin Mei

A monolithic compliant mechanism transmits applied forces from specified input ports to output ports by elastic deformation of its comprising materials, fulfilling required functions analogous to a rigid-body mechanism. In this paper, we propose a level-set method for designing monolithic compliant mechanisms made of multiple materials as an optimization of continuum heterogeneous structures. Central to the method is a multiphase level-set model that precisely specifies the distinct material regions and their sharp interfaces as well as the geometric boundary of the structure. Combined with the classical shape derivatives, the level-set method yields an Eulerian computational system of geometric partial differential equations, capable of performing topological changes and capturing geometric evolutions at the interface and the boundary. The proposed method is demonstrated for single-input and single-output mechanisms and illustrated with several two-dimensional examples of synthesis of multimaterial mechanisms of force inverters and gripping and clamping devices. An analysis on the formation of de facto hinges is presented based on the shape gradient information. A scheme to ensure a well-connected topology of the mechanism during the process of optimization is also presented.


2014 ◽  
Vol 971-973 ◽  
pp. 1941-1948
Author(s):  
Zhao Kun Li ◽  
Hua Mei Bian ◽  
Li Juan Shi ◽  
Xiao Tie Niu

Homogenization or material distribution method based topology optimization will create final topologies in grey level image and saw tooth jump discontinuity boundaries that are not suitable for direct engineering practice, so it is necessary to extract the topological diagram. And a new topology extraction method for compliant mechanisms is presented. In the fist stage, the grey image is transferred into the black-and white finite element topology optimization results. The threshold value meeting to objective function is obtained so that each element is either empty or solid; in the second stage, the density contour approach is used by redistributing nodal densities to generate the smooth boundaries; in the third stage, Smooth boundaries are represented by parameterized B-spline curves whose control points selected from the viewpoint of stiffness and flexibility constitute the parameters ready to undergo shape optimization; Then shape optimization is executed to improve stress-based local performance, The parameters that present the outer shape of the compliant mechanism are used as design variables; In the final stage, simulations of numerical examples are presented to show the validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document