DVS Scheduling for Reducing Both Dynamic and Leakage Energy for (M,K)-Firm Real-Time Systems

Author(s):  
Linwei Niu ◽  
Yuanchang Xie

While the dynamic voltage scaling (DVS) techniques are efficient in reducing the dynamic energy consumption for the processor, varying voltage alone becomes less effective for the overall power reduction as the leakage power is growing rapidly, i.e., five times per technical generation as predicted. On the other hand, Quality of Service (QoS) is also a primary concern in the development of today’s pervasive computing systems. In this paper, we study the problem of minimizing the overall energy consumption for soft real-time systems while ensuring the QoS-guarantee. In our research, the QoS requirements are deterministically quantified with the (m,k)-constraints, which require that at least m out of any k consecutive jobs of a task meet their deadlines. Two approaches are proposed in this paper. One statically determines the mandatory jobs that have to meet their deadlines in order to satisfy the (m,k)-constraints, and the other one does so dynamically. Moreover, we present efficient scheduling techniques to reduce the overall energy by procrastinating the execution of mandatory jobs and thus to merge the idle intervals. The simulation results demonstrate that our proposed techniques significantly outperformed previous research in both overall and idle energy reduction while providing the (m,k)-guarantee.

Author(s):  
Medhat Awadalla

Reducing energy consumption is a critical issue in the design of battery-powered real time systems to prolong battery life. With dynamic voltage scaling (DVS) processors, energy consumption can be reduced efficiently by making appropriate decisions on the processor speed/voltage during the scheduling of real time tasks. Scheduling decision is usually based on parameters which are assumed to be crisp. However, in many circumstances the values of these parameters are vague. The vagueness of parameters suggests that to develop a fuzzy logic approach to reduce energy consumption by determining the appropriate supply-voltage/speed of the processor provided that timing constraints are guaranteed. Intensive simulated experiments and qualitative comparisons with the most related literature have been conducted in the context of dependent real-time tasks. Experimental results have shown that the proposed fuzzy scheduler saves more energy and creates feasible schedules for real time tasks. It also considers tasks priorities which cause higher system utilization and lower deadline miss time.


2014 ◽  
Vol 51 (2) ◽  
pp. 153-191 ◽  
Author(s):  
Vincent Legout ◽  
Mathieu Jan ◽  
Laurent Pautet

Sign in / Sign up

Export Citation Format

Share Document