Style Design System Based on Class A Bézier Curves for High-Quality Aesthetic Shapes

Author(s):  
Tetsuo Oya ◽  
Fumihiko Kimura ◽  
Hideki Aoyama

In this paper, a style design system in which the conditions for Class A Bézier curves are applied is presented to embody designer’s intention by aesthetically high-quality shapes. Here, the term “Class A” means a high-quality shape that has monotone curvature and torsion, and the recent industrial design requires not only aesthetically pleasing aspect but also such high-quality shapes. Conventional design tools such as normal Bézier curves can represent any shapes in a modeling system; however, the system only provides a modeling framework, it does not necessarily guarantee high-quality shapes. Actually, designers do a cumbersome manipulation of many control points during the styling process to represent outline curves and feature curves; this hardship prevents designers from doing efficient and creative styling activities. Therefore, we developed a style design system to support a designer’s task by utilizing the Class A conditions of Bézier curves with monotone curvature and torsion.

Author(s):  
Manhong Wen ◽  
Kwun-Lon Ting

Abstract This paper presents G1 and G2 continuity conditions of c-Bezier curves. It shows that the collinear condition for G1 continuity of Bezier curves is generally no longer necessary for c-Bezier curves. Such a relaxation of constraints on control points is beneficial from the structure of c-Bezier curves. By using vector weights, each control point has two extra free design parameters, which offer the probability of obtaining G1 and G2 continuity by only adjusting the weights if the control points are properly distributed. The enlargement of control point distribution region greatly simplifies the design procedure to and enhances the shape control on constructing composite curves.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Gang Hu ◽  
Huanxin Cao ◽  
Suxia Zhang

Besides inheriting the properties of classical Bézier curves of degreen, the correspondingλ-Bézier curves have a good performance in adjusting their shapes by changing shape control parameter. In this paper, we derive an approximation algorithm for multidegree reduction ofλ-Bézier curves in theL2-norm. By analysing the properties ofλ-Bézier curves of degreen, a method which can deal with approximatingλ-Bézier curve of degreen+1byλ-Bézier curve of degreem  (m≤n)is presented. Then, in unrestricted andC0,C1constraint conditions, the new control points of approximatingλ-Bézier curve can be obtained by solving linear equations, which can minimize the least square error between the approximating curves and the original ones. Finally, several numerical examples of degree reduction are given and the errors are computed in three conditions. The results indicate that the proposed method is effective and easy to implement.


2008 ◽  
Vol 25 (7) ◽  
pp. 523-528 ◽  
Author(s):  
Juan Cao ◽  
Guozhao Wang
Keyword(s):  

2019 ◽  
Vol 355 ◽  
pp. 1-10 ◽  
Author(s):  
Aizeng Wang ◽  
Gang Zhao ◽  
Fei Hou

2008 ◽  
Vol 5 (1-4) ◽  
pp. 121-130 ◽  
Author(s):  
Norimasa Yoshida ◽  
Tomoyuki Hiraiwa ◽  
Takafumi Saito

Sign in / Sign up

Export Citation Format

Share Document