Servo-Constraints for Control of Flexible Multibody Systems With Contact

Author(s):  
Robert Seifried ◽  
Markus Burkhardt

This paper presents inversion based feedforward control design for flexible multibody systems with kinematic loops and end-effector contact. The inverse model provides for a given desired output trajectories, e.g. end-effector point and contact force, the required control inputs for exact output reproduction. A very appealing and efficient model inversion approach for such multibody systems is the use of so-called servo-constraints. These can be seen as an extension of classical mechanical constraints and yield a set of differential-algebraic equations. This allows an efficient numerical solution without burdensome symbolic manipulations. In addition, the use of servo-constraints allows the straight-forward treatment of flexible multibody systems with various topologies. The arising set of differential-algebraic equations describes the inverse model. The inverse model might be purely algebraic or include a dynamical part, which is called internal dynamics in nonlinear control theory. For its numerical solution it is advisable to transform the set of differential-algebraic equations to its underlying set of ordinary differential equations. The solution method for this internal dynamics depends then on its stability. For systems with unstable internal dynamics, as considered in this paper, a solution can be computed from a boundary-value problem. The efficiency of this approach is demonstrated for a flexible multibody system with a kinematic loop and a closed end-effector contact.

Author(s):  
Frank Naets ◽  
Gert H. K. Heirman ◽  
Wim Desmet

This paper introduces a novel model reduction technique, namely Sub-System Global Modal Parameterization (SS-GMP), for real-time simulation of flexible multibody systems. In the past, other system-level model reduction techniques have been proposed for this purpose, but these were limited in applicability due to the large storage requirements for systems with many rigid degrees-of-freedom (DOFs). However, in the SS-GMP approach, the motion of a mechanism is split up into a global motion and a relative motion of the (sub-)system. The relative motion is then reduced according to the Global Modal Parameterization, which is a model reduction procedure suitable for closed chain flexible multibody systems. In combination with suitable explicit solvers, the SS-GMP approach enables (hard) real-time simulations due to the strong reduction in the number of DOFs and the conversion of a system of differential-algebraic equations into a system of ordinary differential equations. The proposed approach is validated numerically with a quarter-car model. This fully flexible mechanism is simulated faster than real-time on a regular PC with the SS-GMP approach while providing accurate results.


Author(s):  
Thomas Berger ◽  
Svenja Drücker ◽  
Lukas Lanza ◽  
Timo Reis ◽  
Robert Seifried

AbstractWe consider tracking control for multibody systems which are modeled using holonomic and non-holonomic constraints. Furthermore, the systems may be underactuated and contain kinematic loops and are thus described by a set of differential-algebraic equations that cannot be reformulated as ordinary differential equations in general. We propose a control strategy which combines a feedforward controller based on the servo-constraints approach with a feedback controller based on a recent funnel control design. As an important tool for both approaches, we present a new procedure to derive the internal dynamics of a multibody system. Furthermore, we present a feasible set of coordinates for the internal dynamics avoiding the effort involved with the computation of the Byrnes–Isidori form. The control design is demonstrated by a simulation for a nonlinear non-minimum phase multi-input, multi-output robotic manipulator with kinematic loop.


Author(s):  
Gert H. K. Heirman ◽  
Wim Desmet

The presence of both differential and algebraic equations in the model equations, as well as the number of degrees of freedom needed to accurately represent flexibility, prohibit fast simulation of flexible multibody systems (e.g. real-time). In this research, Global Modal Parametrization, a model reduction technique for flexible multibody systems is further developed to speed up simulation of flexible multibody systems. The reduction of the model is achieved by projection on a curvilinear subspace instead of a fixed vector space, requiring significantly less degrees of freedom to represent the system dynamics with the same level of accuracy. The complexity of simulation of the reduced model equations is estimated. In a numerical experiment, simulation results for the original model equations are compared with simulation results for the model equations obtained after model reduction, showing a good match. The dominant sources of error of the proposed methodology are illustrated and explained.


Author(s):  
Wang Zhe ◽  
Qiang Tian ◽  
Hiayan Hu

The dynamics of flexible multibody systems with interval parameters is studied based on a non-intrusive computation methodology. The Absolute Nodal Coordinate Formulation (ANCF) is used to model the rigid-flexible multibody system, including the finite elements of the ANCF and the ANCF Reference Nodes (ANCF-RNs). The Chebyshev sampling methods including Chebyshev tensor product (CTP) sampling method and Chebyshev collocation method (CCM), are utilized to generate the Chebyshev surrogate model for Interval Differential Algebraic Equations (IDAEs). For purpose of preventing the interval explosion problem and maintaining computation efficiency, the interval bounds of the IDAEs are determined by scanning the deduced Chebyshev surrogate model. To further improve the computation efficiency, OpenMP directives are also used to parallelize the solving process of the Differential Algebraic Equations (DAEs) by fixing the uncertain interval parameter at the given sampling points. The sensitivity analysis of flexible multibody systems with interval parameters is initially performed by using the direct differentiation method. The direct differentiation method differentiates the dynamic equations with respect to the design variable, which yields the system sensitivity equations governed by DAEs. The generalized alpha method is introduced to integrate the sensitivity DAEs. The sensitivity equations of flexible multibody systems with interval parameters are also described by the IDAEs. Based on the continuum mechanics, the computational efficient analytical formulations for the derivative items of the system sensitivity equations are deduced. Three examples are studied to validate the proposed methodology, including the complicated spatial rigid-flexible multibody systems with a large number of uncertain interval parameters, the flexible system with uncertain interval clearance size joint, and the first order sensitivity analysis of flexible multibody systems with interval parameters. Firstly, the dynamics analysis of a six-arm space robot with six interval parameters is performed. For this case study, the interval dynamics cannot be obtained by directly scanning the IDAEs because extremely huge sets of DAEs with deterministic samples have to be solved. The estimated total computational time for solving the scanned IDAEs will be 1850 days! However, the computational time for solving the scanned Chebyshev surrogate model is 9796.97 seconds. It shows the effectiveness of the proposed computation methodology. Then, the nonlinear dynamics of a planar slider-crank mechanism with uncertain interval clearance size joint is studied in this work. The kinetics model of the revolute clearance joints is formulated under the ANCF-RN framework. Moreover, the influence of the LuGre and the modified Coulomb’s friction force models on the system’s dynamic response is investigated. By analyzing the bounds of dynamic response, the bifurcation diagrams are observed. It must be highlighted that with increasing the size of clearance, it does not automatically lead to unstable behaviors. Finally, the first order sensitivity analysis of flexible multibody systems with interval parameters is also studied in this work. The third one of a flexible mechanism with interval parameters is used to perform the sensitivity analysis.


Author(s):  
Olivier Brüls ◽  
Guaraci Jr. Bastos ◽  
Robert Seifried

The inverse dynamics of flexible multibody systems is formulated as a two-point boundary value problem for an index-3 differential-algebraic equation (DAE). This DAE represents the equation of motion with kinematic and trajectory constraints. For so-called nonminimum phase systems, the remaining dynamics of the inverse model is unstable. Therefore, boundary conditions are imposed not only at the initial time but also at the final time in order to obtain a bounded solution of the inverse model. The numerical solution strategy is based on a reformulation of the DAE in index-2 form and a multiple shooting algorithm, which is known for its robustness and its ability to solve unstable problems. The paper also describes the time integration and sensitivity analysis methods that are used in each shooting phase. The proposed approach does not require a reformulation of the problem in input-output normal form, which is known from nonlinear control theory. It can deal with serial and parallel kinematic topology, minimum phase and nonminimum phase systems, and rigid and flexible mechanisms.


Author(s):  
Thomas Gorius ◽  
Robert Seifried ◽  
Peter Eberhard

In many cases, the design of a tracking controller can be significantly simplified by the use of a 2-degrees of freedom (DOF) control structure, including a feedforward control (i.e., the inversion of the nominal system dynamics). Unfortunately, the computation of this feedforward control is not easy if the system is nonminimum-phase. Important examples of such systems are flexible multibody systems, such as lightweight manipulators. There are several approaches to the numerical computation of the exact inversion of a flexible multibody system. In this paper, the singularly perturbed form of such mechanical systems is used to give a semianalytic solution to the tracking control design. The control makes the end-effector to even though not exactly, but approximately track a certain trajectory. Thereby, the control signal is computed as a series expansion in terms of an overall flexibility of the bodies of the multibody system. Due to the use of symbolic computations, the main calculations are independent of given parameters (e.g., the desired trajectories), such that the feedforward control can be calculated online. The effectiveness of this approach is shown by the simulation of a two-link flexible manipulator.


Author(s):  
Martin M. Tong

The computation of the generalized velocities from the generalized momenta of a multibody system is a part of the numerical solution of the dynamics equations when they are given in the Hamiltonian form. The states of these equations are the generalized coordinates and momenta, (q, p). The generalized velocity, q˙, is defined by q˙ = J−1p, where J is the system mass matrix. The effort in solving q˙ by direct methods is order(N3) where N is the number of bodies in the system. This paper presents an order(N) recursive algorithm to compute q˙ for flexible multibody systems.


Author(s):  
Robert Seifried ◽  
Alexander Held

In industrial manipulators and machine tools modern lightweight designs result in low energy consumption and often allow high working speeds. However, undesired vibrations occur due to the flexibility of the bodies and the control of flexible multibody systems is often a challenging task. In order to achieve good end-effector tracking performance the mechanical design and the control design must be considered concurrently in the sense of an integrated design process. In this paper three different optimization based integrated design approaches for controlled flexible multibody systems are presented.


2019 ◽  
Vol 9 (23) ◽  
pp. 5156 ◽  
Author(s):  
Ilaria Palomba ◽  
Renato Vidoni

The dynamics of flexible multibody systems (FMBSs) is governed by ordinary differential equations or differential-algebraic equations, depending on the modeling approach chosen. In both the cases, the resulting models are highly nonlinear. Thus, they are not directly suitable for the application of the modal analysis and the development of modal models, which are very useful for several advanced engineering techniques (e.g., motion planning, control, and stability analysis of flexible multibody systems). To define and solve an eigenvalue problem for FMBSs, the system dynamics has to be linearized about a selected configuration. However, as modal parameters vary nonlinearly with the system configuration, they should be recomputed for each change of the operating point. This procedure is computationally demanding. Additionally, it does not provide any numerical or analytical correlation between the eigenpairs computed in the different operating points. This paper discusses a parametric modal analysis approach for FMBSs, which allows to derive an analytical polynomial expression for the eigenpairs as function of the system configuration, by solving a single eigenvalue problem and using only matrix operations. The availability of a similar modal model, which explicitly depends on the system configuration, can be very helpful for, e.g., model-based motion planning and control strategies towards to zero residual vibration employing the system modal characteristics. Moreover, it allows for an easy sensitivity analysis of modal characteristics to parameter uncertainties. After the theoretical development, the method is applied and validated on a flexible multibody system, specifically using the Equivalent Rigid Link System dynamic formulation. Finally, numerical results are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document