mass matrix
Recently Published Documents


TOTAL DOCUMENTS

1050
(FIVE YEARS 153)

H-INDEX

58
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Takaaki Nomura ◽  
Hiroshi Okada

Abstract We discuss a linear seesaw model with as minimum field content as possible, introducing a modular $S_4$ with the help of gauged $U(1)_{B-L}$ symmetries. Due to rank two neutrino mass matrix, we have a vanishing neutrino mass eigenvalue, and only the normal mass hierarchy of neutrinos is favored through the modular $S_4$ symmetry.In our numerical $\Delta \chi^2$ analysis, we especially find rather sharp prediction on sum of neutrino masses to be around $60$ meV in addition to the other predictions. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


2022 ◽  
Vol 12 (1) ◽  
pp. 433
Author(s):  
Federico Valenzuela-Beltrán ◽  
Mario D. Llanes-Tizoc ◽  
Edén Bojórquez ◽  
Juan Bojórquez ◽  
Robespierre Chávez ◽  
...  

The response of steel moment frames is estimated by first considering that the mass matrix is the concentrated type (ML) and then consistent type (MC). The effect of considering more than one element per beam is also evaluated. Low-, mid- and high-rise frames, modeled as complex-2D-MDOF systems, are used in the numerical study. Results indicate that if ML is used, depending upon the response parameter under consideration, the structural model, the seismic intensity and the structural location, the response can be significantly overestimated, precisely calculated, or significantly underestimated. Axial loads at columns, on an average basis, are significantly overestimated (up to 60%), while lateral drifts and flexural moments at beams are precisely calculated. Inter-story shears and flexural moments at columns, on average, are underestimated by up to 15% and 35%, respectively; however, underestimations of up to 60% can be seen for some individual strong motions. Similarly, if just one element per beam is used in the structural modeling, inter-story shears and axial loads on columns are overestimated, on average, by up to 21% and 95%, respectively, while the lateral drifts are precisely calculated. Flexural moments at columns and beams can be considerably underestimated (on average up to 14% and 35%, respectively), but underestimations larger than 50% can be seen for some individual cases. Hence, there is no error in terms of lateral drifts if ML or one element per beam is used, but significant errors can be introduced in the design due to the overestimation and underestimation of the design forces. It is strongly suggested to use MC and at least two elements per beam in the structural modeling.


2021 ◽  
Author(s):  
Jagadeesh Anmala ◽  
Rabi H Mohtar

Abstract The upper and lower bounds of amplification factors of lumped finite element schemes are compared with nodal (integer or half-integer multiple of) eigen-value solutions of consistent finite element scheme at element and node levels of error analysis. The closeness or proximity between bounds on solutions of amplification factors and eigen-solutions reveals that the two methods, consistent and lumped finite element schemes are equivalent. The element error solutions of lumped mass matrix assumption and consistent nodal solution denotes the element-node error equivalence and the nodal solutions of all of the finite element schemes denote the node-node error equivalence for square finite elements in kinematic wave shallow water equations. The comparison plots of lumped and consistent finite element schemes are presented in this paper for illustration.


Author(s):  
A Mandal ◽  
C Ray ◽  
S Haldar

The presence of cutouts at different positions of laminated shell component in marine and aeronautical structures facilitate heat dissipation, undertaking maintenance, fitting auxiliary equipment, access ports for mechanical and electrical systems, damage inspection and also influences the dynamic behaviour of the structures. The aim of the present study is to establish a comprehensive perspective of dynamic behavior of laminated deep shells (length to radius of curvature ratio less than one) with cut-out by experiments and numerical simulation. The glass epoxy laminated composite shell has been prepared in the laboratory by resin infusion. The experimental free vibration analysis is carried out on laminated shells with and without cut-out. The mass matrix is developed by considering rotary inertia in a lumped mass model in the numerical modeling. The results obtained from numerical and experimental studies are compared for verification and the consistency between mode shapes is established by applying modal assurance criteria.


Author(s):  
Zhi-zhong Xing

Abstract Requiring the effective mass term for a category of fundamental Dirac or Majorana fermions of the same electric charge to be invariant under the translational transformations $\psi^{}_{\alpha \rm L (R)} \to \psi^{}_{\alpha \rm L (R)} + n^{}_{\alpha} z^{}_{\psi \rm L(R)}$ in the flavor space, where $n^{}_\alpha$ and $z^{}_{\psi \rm L(R)}$ stand respectively for the flavor-dependent complex numbers and a constant spinor field anticommuting with the fermion fields, we show that $n^{}_\alpha$ can be identified as the elements $U^{}_{\alpha i}$ in the $i$-th column of the unitary matrix $U$ used to diagonalize the corresponding Hermitian or symmetric fermion mass matrix $M^{}_\psi$, and $m^{}_i = 0$ holds accordingly. We find that the reverse is also true. Now that the mass spectra of charged leptons, up- and down-type quarks are all strongly hierarchical and current experimental data allow the lightest neutrino to be massless, we argue that the zero mass limit for the first-family fermions and the translational flavor symmetry behind it should be a natural starting point for building viable fermion mass models.


2021 ◽  
Vol 11 (22) ◽  
pp. 11072
Author(s):  
Shenyan Chen ◽  
Ziqi Dai ◽  
Wenjing Shi ◽  
Yanjie Liu ◽  
Jianhongyu Li

Local modal vibration could adversely affect the dynamical environment, which should be considered in the structural design. For the mode switching phenomena, the traditional structural optimization method for problems with specific order of modal frequency constraints could not be directly applied to solve problems with local frequency constraints. In the present work, a novel approximation technique without mode tracking is proposed. According to the structural character, three reasonable assumptions, unchanged mass matrix, accordant modal shape, and reversible stiffness matrix, have been used to transform the optimization problem with local frequency constraints into a problem with nodal displacement constraints in the local area. The static load case is created with the modal shape equilibrium forces, then the displacement constrained optimization is relatively easily solved to obtain the optimal design, which satisfies the local frequency constraints as well. A numerical example is used to verify the feasibility of the proposed approximation method. Then, the method is further applied in a satellite structure optimization problem.


Author(s):  
Abdel Pérez-Lorenzana

Exchange [Formula: see text] symmetry in the effective Majorana neutrino mass matrix does predict a maximal mixing for atmospheric neutrino oscillations asides to a null mixing that cannot be straightforwardly identified with reactor neutrino oscillation mixing, [Formula: see text], unless a specific ordering is assumed for the mass eigenstates. Otherwise, a nonzero value for [Formula: see text] is predicted already at the level of an exact symmetry. In this case, solar neutrino mixing and scale, as well as the correct atmospheric mixing arise from the breaking of the symmetry. I present a mass matrix proposal for normal hierarchy that realizes this scenario, where the smallness of [Formula: see text] is naturally given by the parameter [Formula: see text] and the solar mixing is linked to the smallness of [Formula: see text]. The proposed matrix remains stable under renormalization effects and it also allows to account for CP violation within the expected region without further constrains.


2021 ◽  
Vol 10 (4) ◽  
pp. 253-268
Author(s):  
Ruhi Aydin

In the static analysis of beam-column systems using matrix methods, polynomials are using as the shape functions. The transverse deflections along the beam axis, including the axial- flexural effects in the beam-column element, are not adequately described by polynomials. As an alternative method, the element stiffness matrix is modeling using stability parameters. The shape functions which are obtaining using the stability parameters are more compatible with the system’s behavior. A mass matrix used in the dynamic analysis is evaluated using the same shape functions as those used for derivations of the stiffness coefficients and is called a consistent mass matrix. In this study, the stiffness and consistent mass matrices for prismatic three-dimensional Bernoulli-Euler and Timoshenko beam-columns are proposed with consideration for the axial-flexural interactions and shear deformations associated with transverse deflections along the beam axis. The second-order effects, critical buckling loads, and eigenvalues are determined. According to the author’s knowledge, this study is the first report of the derivations of consistent mass matrices of Bernoulli-Euler and Timoshenko beam-columns under the effect of axially compressive or tensile force.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6616
Author(s):  
Agnieszka Lenartowicz ◽  
Maciej Przychodzki ◽  
Michał Guminiak ◽  
Tomasz Garbowski

The main subject of this study is to determine the optimal position of a fixed number of viscoelastic dampers on the surface of a thin (Kirchhoff-Love) plate. It is assumed that the dampers are described according to the generalized Maxwell model. In order to determine the optimal position of the dampers, a metaheuristic optimization method is used, called the particle swarm optimization method. The non-dimensional damping ratio of the first mode of the plate vibrations is assumed as an objective function in the task. The dynamic characteristics of the plate with dampers are determined by solving the non-linear eigenproblem using the continuation method. The finite element method is used to determine the stiffness matrix and the mass matrix occurring in the considered eigenproblem. The results of exemplary numerical calculations are also presented, where the final optimal arrangement of dampers on the surface of sample plates with different boundary conditions is shown graphically.


Sign in / Sign up

Export Citation Format

Share Document