Volume 4: 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B and C
Latest Publications


TOTAL DOCUMENTS

234
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

Published By ASMEDC

9780791849019

Author(s):  
Hu Sheng ◽  
YangQuan Chen

Great Salt Lake (GSL) is the largest salt lake in the western hemisphere, the fourth-largest terminal lake in the world. The elevation of Great Salt Lake has critical effect on the people who live nearby and their properties. It is crucial to build an exact model of GSL elevation time series in order to predict the GSL elevation precisely. Although some models, such as FARIMA or ARFIMA (Auto-Regressive Fractional Integral and Moving Average), GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) and FIGARCH (Fractional Integral Generalized Auto-Regressive Conditional Heteroskedasticity), have been built to characterize the variation of Great Salt Lake elevation, these models can not characterize it perfectly. Therefore, it became a key point to build a more appropriate model of GSL elevation time series. In this paper a new model based on fractional autoregressive integrated moving average (ARFIMA) with Stable innovations is applied to analyze the data and predict the future levels. From the analysis we can see that the new model can characterize GSL elevation time series more accurately. The new model will be beneficial to predict GSL elevation more precisely.


Author(s):  
Hiroyuki Sugiyama ◽  
Hirohisa Koyama ◽  
Hiroki Yamashita

In this investigation, a gradient deficient beam element of the absolute nodal coordinate formulation is generalized to a curved beam for the analysis of multibody systems and the performance of the proposed element is discussed by comparing with the fully parameterized curved beam element and the classical large displacement beam element with incremental solution procedures. Strain components are defined with respect to the initially curved configuration and described by the arc-length coordinate. The Green strain is used for the longitudinal stretch, while the material measure of curvature is used for bending. It is shown that strains of the curved beam can be expressed with respect to those defined in the element coordinate system using the gradient transformation and the effect of strains at the initially curved configuration is eliminated using one-dimensional Almansi strain. This property can be effectively used with non-incremental solution procedure employed for the absolute nodal coordinate formulation. Several numerical examples are presented in order to demonstrate the performance of the gradient deficient curved beam element developed in this investigation. It is shown that the use of the proposed element leads to better element convergence as compared to that of the fully parameterized element and the classical large displacement beam element with incremental solution procedures.


Author(s):  
Marco Ferioli

Interference diagrams can be used to avoid the potential excitation of a particular mode of vibration for centrifugal compressor impellers, thus reducing the risk of fatigue failures. Such diagrams are an excellent tool to combine information on impeller natural frequencies and mode shapes, excitation sources and operating speed of the machine on the same graph. Once the impeller design has been finalized in terms of aerodynamic performance, structural assessments and therefore geometry, Finite Element Analysis can be used to predict its natural frequencies and mode shapes (i.e. nodal diameters). Results can therefore be shown on a chart, together with the operating speed range of the machine. The need to plot on a single diagram this whole set of data arises from the mathematical evidence to consider the frequency of vibration together with the mode shape and the shape of the exciting force, while analyzing resonances. Typical Campbell diagrams are unable to provide this information at a glance. A common source of excitation for the first impeller of centrifugal compressors is the IGV set. Inlet Guide Vanes produce an exciting frequency that is directly proportional to the number of vanes N, where N represents also the shape of the excitation. The interference diagram can therefore be used: • to design and optimize the IGV for a new machine; • to choose between two different designs; • to evaluate the impact of a new IGV for the impeller of an existing compressor. A case study will be introduced, in order to show the application of interference diagrams to avoid potentially dangerous resonances between an IGV set and the first impeller during the re-design phase for a centrifugal compressor already in operation.


Author(s):  
Calvin Coopmans ◽  
Ivo Petra´sˇ ◽  
YangQuan Chen

Memristor is a new electrical element which has been predicted and described in 1971 by Leon O. Chua and for the first time realized by HP laboratory in 2008. Chua proved that memristor behavior could not be duplicated by any circuit built using only the other three elements (resistor, capacitor, inductor), which is why the memristor is truly fundamental. Memristor is a contraction of memory resistor, because that is exactly its function: to remember its history. The memristor is a two-terminal device whose resistance depends on the magnitude and polarity of the voltage applied to it and the length of time that voltage has been applied. The missing element—the memristor, with memristance M—provides a functional relation between charge and flux, dφ = Mdq. In this paper, for the first time, the concept of (integer-order) memristive systems is generalized to non-integer order case using fractional calculus. We also show that the memory effect of such devices can be also used for an analogue implementation of the fractional-order operator, namely fractional-order integral and fractional-order derivatives. This kind of operators are useful for realization of the fractional-order controllers. We present theoretical description of such implementation and we proposed the practical realization and did some experiments as well.


Author(s):  
Tama´s Kalma´r-Nagy

In this paper we establish a practical formula that could be used to augment existing linear stability charts for turning to include the occurrence of contact loss between tool and workpiece in turning. We show that the contact loss discontinuity in the global model is responsible for the creation of the experimentally observed coexistence of subcritical instability and hysteresis in the cutting process. Comparison of experimental data with extensive numerical simulations nicely support the theoretical findings.


Author(s):  
Audrey Rizzo ◽  
Xavier Moreau ◽  
Alain Oustaloup ◽  
Vincent Hernette

In a vibration isolation context, fractional derivative can be used to design suspensions which allow to obtain similar performances in spite of parameters uncertainties. This paper presents the synthesis and the achievement of a new Hydractive CRONE suspension system. After the study of the different constraint in suspension in the first paper, the ideal transfer function of the hydractive CRONE suspension is created and simulated in different case. Then a method to determine the technological parameters is proposed. A parallel arrangement of dissipative and capacitive components and a gamma arrangement are compared. They lead to the same unusual performances: the stability degree robustness and the rapidity robustness.


Author(s):  
P. Melchior ◽  
C. Inarn ◽  
A. Oustaloup

The aim of this paper concerns motion control and robust path tracking. An approach based on fractional prefilter synthesis was already developed. It allows tracking optimization according to the fractional derivation order, the actuators physical constraints and the control loop frequency bandwidth. The purpose of this paper is the extension of this approach to multivariable systems. A non integer prefilter synthesis methodology for square MIMO systems (Multi-Input, Multi-Output) is presented. It is based on the MIMO-QFT robust synthesis methodology, taking into account of the plant uncertainties. MIMO-QFT robust synthesis methodology is based on multiple SISO (MISO systems) synthesis by considering the loop couplings. The SISO-QFT synthesis methodology can be then used for each SISO synthesis. Then the prefilters are synthesized. The prefilter parameter optimization is founded on the prefilter output error integral minimization, taking into account of the actuators physical constraints and the tracking performance specifications. An application example is given.


Author(s):  
Werner Schiehlen ◽  
Makoto Iwamura

In this paper, we consider the problem to minimize the energy consumption for controlled multibody systems utilizing passive elastic elements for energy storage useful for robot systems in manufacturing. Firstly, based on the linearized equations of motion, we analyze the relationship between the consumed energy and the operating time, and the optimal trajectory using optimal control theory. Then, we verify the analytical solution by comparing with the numerical one computed considering the full nonlinear dynamics. After that we derive a condition for the operating time to be optimal, and propose the optimal design method for springs. Finally, we show the effectiveness of the design method by applying it to a 2DOF manipulator.


Author(s):  
Hongguang Sun ◽  
Yangquan Chen ◽  
Wen Chen

This paper proposes a new type of fractional differential equation model, named time fractional differential equation model, in which noise term is included in the time derivative order. The new model is applied to anomalous relaxation and diffusion processes suffering noisy field. The analysis and numerical simulation results show that our model can well describes the feature of these processes. We also find that the scale parameter and the frequency of the noise play a crucial role in the behaviors of these systems. At the end, we recognize some potential applications of this new model.


Author(s):  
W. T. van Horssen ◽  
O. V. Pischanskyy ◽  
J. L. A. Dubbeldam

In this paper the forced vibrations of a linear, single degree of freedom oscillator (sdofo) with a time-varying mass will be studied. The forced vibrations are due to small masses which are periodically hitting and leaving the oscillator with different velocities. Since these small masses stay for some time on the oscillator surface the effective mass of the oscillator will periodically vary in time. Not only solutions of the oscillator equation will be constructed, but also the stability properties, and the existence of periodic solutions will be discussed.


Sign in / Sign up

Export Citation Format

Share Document