Integrating 3D Stress Analysis With Flexible Multibody Dynamics Simulation

Author(s):  
Olivier A. Bauchau ◽  
Shilei Han

This paper presents an approach toward the integration of 3D stress computation with the tools used for the simulation of flexible multibody dynamics. Due to the low accuracy of the floating frame of reference approach, the the multibody dynamics community has turned its attention to comprehensive analysis tools based on beam theory. These tools evaluate sectional stress resultants, not 3D stress fields. The proposed approach decomposes the 3D problem into two simpler problems: a linear 2D analysis of the cross-section of the beam and a nonlinear, 1D of the beam. This procedure is described in details. For static problems, the proposed approach provides exact solutions of three-dimensional elasticity for uniform beams of arbitrary geometric configuration and made of anisotropic composite materials. While this strategy has been applied to dynamic problems, little attention has been devoted to inertial effects. This paper assesses the range of validity of the proposed beam theory when applied to dynamics problems. When beams are subjected to large axial forces, the induced axial stress components become inclined, generating a net torque that opposes further rotation of the section and leading to an increased effective torsional stiffness. This behavior, referred to as the Wagner or trapeze effect, cannot be captured by beam formulations that assume strain components to remain small, although arbitrarily large motions are taken into account properly. A formulation of beam theory that includes higher-order strain effects in an approximate manner is developed and numerical examples are presented. The “Saint-Venant problem” refers to a three-dimensional beam loaded at its end sections only. The “Almansi-Michell problem” refers to a three-dimensional beam loaded by distributed body forces, lateral surface tractions, and forces and moments at its end sections. Numerical examples of beams subjected to distributed loads will be presented and compared with 3D finite element solutions.

Author(s):  
R. S. Hwang ◽  
E. J. Haug

Abstract Formulations of translational kinematic constraints between flexible bodies are developed to model deformatioin of flexible surfaces that move relative to one another. Three types of flexible translational articulated joints are presented The joint formulations are illustrated in analysis of prototype systems with translational joints. Global deformation modes and substructure local deformation modes are used and compared in numerical examples.


2005 ◽  
Vol 29 (3) ◽  
pp. 357-373 ◽  
Author(s):  
R. G. Langlois ◽  
R. J. Anderson

A classical planar problem in forward flexible multibody dynamics is thoroughly investigated. The system consists of a damped flexible beam cantilevered to a rigid translating cart. The problem is solved using three distinctly different conventional approaches presented in roughly the chronological order in which they have been applied to flexible dynamic systems. First, a modal superposition formulation based on Bernoulli-Euler beam theory is developed. Second, an alternative solution is developed drawing exclusively on methods for rigid body dynamics combined with a knowledge of the theoretical modal behaviour of continuous beams. Third, a formulation based on the conventional finite element method using four-degree-of-freedom planar beam elements is adapted to include the rigid body motion of the cart. The relative merits of the three formulations are discussed and numerical simulation results generated using each of the three formulations are compared with each other and with a solution from a general-purpose flexible multibody dynamics formulation that is briefly outlined. The relative accuracy and efficiency of the methods and the challenges associated with generalizing each formulation are discussed.


Author(s):  
Olivier A. Bauchau ◽  
Zijing Lao ◽  
Joachim Linn

It is often necessary to consider material dissipation effects in structural dynamics analysis. A novel three-dimensional viscoelastic beam formulation is proposed. A systematic procedure is proposed to incorporate existing viscoelastic material models into beam theories. The generalized Maxwell model is used to demonstrate the procedure. Starting from a three-dimensional beam theory, classical material viscoelastic constitutive laws are used to develop viscoelastic beam models for flexible multibody dynamics. In contrast with classical beam theories, the proposed beam formulation captures three-dimensional stress and strains distributions based on a novel dimensional reduction method, and models dissipative phenomena at the same time. All cross-sectional deformation modes are considered in the formulation. With the generalized Maxwell model, the formulation is valid for a broad range of frequencies. Because it is based on a three-dimensional formulation, the proposed approach uses a decomposition of the strain tensor into bulk and deviatoric components, thereby eliminating Poisson locking effects. This is particularly important because many highly dissipative materials are also nearly incompressible. Numerical examples are presented to illustrate these characteristics. Because the formulation developed is a beam model, it is computationally efficient and can be used for the simulation of flexible multibody dynamics systems.


2020 ◽  
Vol 10 (20) ◽  
pp. 7143
Author(s):  
Seongji Han ◽  
Jin-Gyun Kim ◽  
Juhwan Choi ◽  
Jin Hwan Choi

Coordinate reduction has been widely used for efficient simulation of flexible multibody dynamics. To achieve the reduction of flexible bodies with reasonable accuracy, the appropriate number of dominant modes used for the reduction process must be selected. To handle this issue, an iterative coordinate reduction strategy is introduced. In the iteration step, more dominant modes of flexible bodies are selected than the ones in the previous step. Among the various methods, the conventional frequency cut-off rule is here considered. As a stop criterion, a novel a posteriori error estimator that can evaluate the relative eigenvalue error between full and reduced flexible bodies is proposed. Through the estimated relative eigenvalue error obtained, the number of dominant modes is automatically selected to satisfy the error tolerance up to the desired mode range. The applicability to the automation process is verified through numerical examples. It is also evaluated that efficient and accurate flexible multibody dynamics simulation is available with the reduced flexible body, generated by the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document