Gradient-Based Multi-Component Topology Optimization for Additive Manufacturing (MTO-A)

Author(s):  
Yuqing Zhou ◽  
Kazuhiro Saitou

Topology optimization for additive manufacturing has been limited to the component-level designs with the component size smaller than the printer’s build volume. To enable the design of structures larger than the printer’s build volume, this paper presents a gradient-based multi-component topology optimization framework for structures assembled from components built by additive manufacturing. Constraints on component geometry for additive manufacturing are incorporated in the density-based topology optimization, with additional design variables specifying fractional component membership. For each component, constraints on build size, enclosed voids, overhangs, and the minimum length scale are imposed during the simultaneous optimization of overall base topology and component partitioning. The preliminary result on a minimum compliance structure shows promising advantages over the conventional monolithic topology optimization. Manufacturing constraints previously applied to monolithic topology optimization gain new interpretations when applied to multi-component assemblies, which can unlock richer design space for topology exploration.

Author(s):  
James K. Guest ◽  
Mu Zhu

Projection-based algorithms are arising as a powerful tool for continuum topology optimization. They use independent design variables that are projected onto element space to create structure topology. The projection functions are designed so that geometric properties, such as the minimum length scale of features, are naturally achieved. They therefore offer an efficient means for imposing geometry-related design specifications and/or manufacturing constraints. This paper presents recent advances in projection-based algorithms, including topology optimization under manufacturing constraints related to milling and casting processes. The new advancements leverage the logic of recently proposed algorithms for Heaviside projection, including eliminating continuation methods on projection parameters and potential for using multiple design variables to achieve active projection of each phase used in design. The primary advantages of such an approach are that manufacturing restrictions are achieved naturally, without need for additional constraints, and that sensitivity calculations are efficient and straightforward. The primary drawback of the approach is that the so-called neighborhood maps require storage for efficient processing when using unstructured meshing.


Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Kazuhiro Saitou

This paper presents a gradient-based multi-component topology optimization (MTO) method for structures assembled from components made by powder bed additive manufacturing. It is built upon our previous work on the continuously-relaxed MTO framework utilizing the concept of fractional component membership. The previous attempt on the integration of the relaxed MTO framework with additive manufacturing constraints, however, suffered from numerical instability for larger size problems, limiting its application to 2D low-resolution examples. To overcome this difficulty, this paper proposes an improved MTO formulation based on a design field regularization and a nonlinear projection of component membership variables, with a focus on powder bed additive manufacturing. For each component, constraints on the maximum allowable build volume (i.e., length, width, and height), the elimination of enclosed voids, and the minimum printable feature size are imposed during the simultaneous optimization of the overall base topology and component partitioning. The scalability of the new MTO formulation is demonstrated by a few 2D examples with much higher resolution than previously reported, and the first reported 3D example of MTO.


Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Kazuhiro Saitou

Topology optimization for additive manufacturing has been limited to the design of single-piece components that fit within the printer's build volume. This paper presents a gradient-based multicomponent topology optimization method for structures assembled from components built by powder bed additive manufacturing (MTO-A), which enables the design of multipiece assemblies larger than the printer's build volume. Constraints on component geometry for powder bed additive manufacturing are incorporated in a density-based topology optimization framework, with an additional design field governing the component partitioning. For each component, constraints on the maximum allowable build volume (i.e., length, width, and height) and the elimination of enclosed cavities are imposed during the simultaneous optimization of the overall topology and component partitioning. Numerical results of the minimum compliance designs revealed that manufacturing constraints, previously applied to single-piece topology optimization, can unlock richer design exploration space when applied to multicomponent designs.


Author(s):  
Benjamin M. Weiss ◽  
Joshua M. Hamel ◽  
Mark A. Ganter ◽  
Duane W. Storti

The topology optimization (TO) of structures to be produced using additive manufacturing (AM) is explored using a data-driven constraint function that predicts the minimum producible size of small features in different shapes and orientations. This shape- and orientation-dependent manufacturing constraint, derived from experimental data, is implemented within a TO framework using a modified version of the Moving Morphable Components (MMC) approach. Because the analytic constraint function is fully differentiable, gradient-based optimization can be used. The MMC approach is extended in this work to include a “bootstrapping” step, which provides initial component layouts to the MMC algorithm based on intermediate Solid Isotropic Material with Penalization (SIMP) topology optimization results. This “bootstrapping” approach improves convergence compared to reference MMC implementations. Results from two compliance design optimization example problems demonstrate the successful integration of the manufacturability constraint in the MMC approach, and the optimal designs produced show minor changes in topology and shape compared to designs produced using fixed-radius filters in the traditional SIMP approach. The use of this data-driven manufacturability constraint makes it possible to take better advantage of the achievable complexity in additive manufacturing processes, while resulting in typical penalties to the design objective function of around only 2% when compared to the unconstrained case.


2019 ◽  
Vol 60 (1) ◽  
pp. 393-400 ◽  
Author(s):  
Kaike Yang ◽  
Eduardo Fernandez ◽  
Cao Niu ◽  
Pierre Duysinx ◽  
Jihong Zhu ◽  
...  

Author(s):  
Alok Sutradhar ◽  
Jaejong Park ◽  
Payam Haghighi ◽  
Jacob Kresslein ◽  
Duane Detwiler ◽  
...  

Topology optimization provides optimized solutions with complex geometries which are often not suitable for direct manufacturing without further steps or post-processing by the designer. There has been a recent progression towards linking topology optimization with additive manufacturing, which is less restrictive than traditional manufacturing methods, but the technology is still in its infancy being costly, time-consuming, and energy inefficient. For applications in automotive or aerospace industries, the traditional manufacturing processes are still preferred and utilized to a far greater extent. Adding manufacturing constraints within the topology optimization framework eliminates the additional design steps of interpreting the topology optimization result and converting it to viable manufacturable parts. Furthermore, unintended but inevitable deviations that occur during manual conversion from the topology optimized result can be avoided. In this paper, we review recent advances to integrate (traditional) manufacturing constraints in the topology optimization process. The focus is on the methods that can create manufacturable and well-defined geometries. The survey will discuss the advantages, limitations, and related challenges of manufacturability in topology optimization.


Sign in / Sign up

Export Citation Format

Share Document