scholarly journals The VR Factory: Discrete Event Simulation Implemented in a Virtual Environment

Author(s):  
Jason J. Kelsick ◽  
Judy M. Vance

Abstract Virtual reality (VR) refers to an immersive, interactive, multi-sensory, viewer-centered, three-dimensional (3D) computer generated environment and the combination of technologies required to build such an environment (Cruz-Neira, 1993). Related to problems of engineering design and manufacturing, this new technology offers engineers the ability to work with computer models in a three-dimensional, immersive environment. This paper describes a virtual reality application where the results of a discrete event simulation of a manufacturing cell are integrated with a virtual model of the cell to produce a virtual environment. The program described in this paper, the VR Factory, allows the user to investigate how various changes to the manufacturing cell affect part production. This investigation is performed while immersed in a computer generated three-dimensional representation of the cell. This paper describes the creation of the VR model of the manufacturing cell, the animation of the environment and the implementation of the results of the discrete event simulation.

2003 ◽  
Vol 125 (3) ◽  
pp. 428-433 ◽  
Author(s):  
Jason Kelsick ◽  
Judy M. Vance ◽  
Lori Buhr ◽  
Cheryl Moller

Virtual reality (VR) technology provides a human-computer interface that allows participants to interact naturally with digital objects which are represented as three-dimensional images that occupy positions in a three-dimensional world. Related to problems of engineering design and manufacturing, this new technology offers engineers the ability to work with computer models in a three-dimensional, immersive environment. This paper describes a virtual reality application where the results of a discrete event simulation of a manufacturing cell are integrated with a virtual model of the cell to produce a virtual environment. The program described in this paper, the VRFactory, combines results from a commercial discrete event simulation program, SLAM II, with a virtual environment. This allows the user to investigate, using three-dimensional computer models, how various changes to the manufacturing cell affect part production. This investigation is performed while immersed in a computer-generated three-dimensional representation of the cell. Existing discrete event programming software allows only two-dimensional views of the factory as the parts progress through the simulation. Parts are shown only as primitive geometric shapes on the computer monitor and instantaneously move from one station to the next. The virtual environment implementation of the SLAM II results allows users to experience the simulation in a fully immersive three-dimensional digital environment. The virtual environment used here is a CAVE™-like projection screen-based facility called the C2, which is located at Iowa State University. This paper describes the creation of the VR model of the manufacturing cell, the animation of the environment and the implementation of the results of the discrete event simulation.


2021 ◽  
Author(s):  
Petrit Dode

This action research thesis aimed to: 1) develop and test a viable Discrete Event Simulation and Human Factors Modeling approach for an Ontario based telecommunication company, and 2) identify the factors that affect the uptake and application of the approach in work system design. This approach, which was validated at the Company, incorporated fatigue dose and learning curves in a Discrete Event Simulation model. The barriers to uptake included: Time constraints, lack of technological knowledge and initial cost. The uptake facilitators were: High frequency products produced, clear value added to leadership, defects reduction and the Company being open to new technology. In addition to helping design a manual assembly line with fewer bottlenecks and reduce the human factors risks for the employee, the developed approach showed a 26% correlation with quality defects. Further research is recommended to identify additional human factors and their benefits.


2008 ◽  
Vol 575-578 ◽  
pp. 709-715 ◽  
Author(s):  
Zhen Xin Liang ◽  
Jian Xun Zhang ◽  
Yi Pei

Gas shield Tungsten Arc Welding (GTAW) is an important process method in material processing. Welding quality is vital for the product quality. It is an important way to improve the quality of product by raising the personal capability and handling technique of the welder. In this investigation, because of the deficiency in classic welding training scheme, some new technology were introduced into classic welding training field to improve the efficiency of welding training and reduce training cost. A computer simulation system that can be used to train primary welders was developed combined with three-dimensional stereoscopic vision and API interface of OpenGL, virtual reality is the kernel technology. In this system, welders were trained not in the real operating environment but in the virtual environment where has experience personally effect that simulated by computer. There is unnecessary with welding material and welding energy in virtual environment simulated by computer. It has highly automatic and intelligent and lower required to welding teachers. It is healthy to welder because that intensive arc and harmful dust are disappeared in virtual environment. It is a lower cost and high efficiency method by use of virtual training system to training new welder.


2016 ◽  
Vol 46 (6) ◽  
pp. 882-894 ◽  
Author(s):  
Christopher J. Turner ◽  
Windo Hutabarat ◽  
John Oyekan ◽  
Ashutosh Tiwari

2021 ◽  
Author(s):  
Petrit Dode

This action research thesis aimed to: 1) develop and test a viable Discrete Event Simulation and Human Factors Modeling approach for an Ontario based telecommunication company, and 2) identify the factors that affect the uptake and application of the approach in work system design. This approach, which was validated at the Company, incorporated fatigue dose and learning curves in a Discrete Event Simulation model. The barriers to uptake included: Time constraints, lack of technological knowledge and initial cost. The uptake facilitators were: High frequency products produced, clear value added to leadership, defects reduction and the Company being open to new technology. In addition to helping design a manual assembly line with fewer bottlenecks and reduce the human factors risks for the employee, the developed approach showed a 26% correlation with quality defects. Further research is recommended to identify additional human factors and their benefits.


Sign in / Sign up

Export Citation Format

Share Document