Conceptual Design and Simulation of the Traction Control System of a High Performance Electric Vehicle

Author(s):  
Juan Sebastián Núñez ◽  
Luis Ernesto Muñoz

This paper presents the conceptual design of the traction control system of a high performance electric vehicle with four driven wheels, intended to be used in quarter mile competitions. Different models of the longitudinal and vertical vehicle’s dynamics are presented, in order to consider the coupling dynamics of front and rear wheels. Two slip control strategies are proposed so as to maximize the traction forces of the wheels. The first one consists of a traditional control scheme applied to each wheel of the vehicle. Since the interaction between the tire and the road is often poorly known, the second controller proposed consists of a perturbation based extremum seeking control (PBESC), in order to maximize the traction force without knowledge of the road and the tire characteristics. Finally an auto tuning process based on low discrepancy sequences for both control systems is presented.

Electric vehicle (EV) are being embraced in recent times as they run on clean fuel, zero tail emission and are environment-friendly. Recent advancements in the field of power electronics and control strategies have made it possible to the advent in the vehicle dynamics, efficiency and range. This paper presents a design for traction control system (TCS) for longitudinal stability and Direct Yaw Control (DYC) for lateral stability simultaneous. The TCS and DYC is based on multiple frequency controlled electronic differential with a simple and effective approach. Along with it, some overviews have been presented on some state of the art in traction control system (TCS) and torque vectoring. The developed technique reduces nonlinearity, multisensory interfacing complexity and response time of the system. This torque and yaw correction strategy can be implemented alongside fuzzy control, sliding mode or neural network based controller. The effectiveness of the control method has been validated using a lightweight neighbourhood electric vehicle as a test platform. The acquired results confirm the versatility of proposed design and can be implemented in any DC motor based TCS/DYC.


Sign in / Sign up

Export Citation Format

Share Document