torque vectoring
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 83)

H-INDEX

15
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8143
Author(s):  
Junnian Wang ◽  
Siwen Lv ◽  
Nana Sun ◽  
Shoulin Gao ◽  
Wen Sun ◽  
...  

The anxiety of driving range and inconvenience of battery recharging has placed high requirements on the energy efficiency of electric vehicles. To reduce driving-wheel slip energy consumption while cornering, a torque vectoring control strategy for a rear-wheel independent-drive (RWID) electric vehicle is proposed. First, the longitudinal linear stiffness of each driving wheel is estimated by using the approach of recursive least squares. Then, an initial differential torque is calculated for reducing their overall tire slippage energy dissipation. However, before the differential torque is applied to the two side of driving wheels, an acceleration slip regulation (ASR) is introduced into the overall control strategy to avoid entering into the tire adhesion saturation region resulting in excessive slip. Finally, the simulations of typical manoeuvring conditions are performed to verify the veracity of the estimated tire longitudinal linear stiffness and effectiveness of the torque vectoring control strategy. As a result, the proposed torque vectoring control leads to the largest reduction of around 17% slip power consumption for the situations carried out above.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liang Su ◽  
Zhenpo Wang ◽  
Chao Chen

Purpose The purpose of this study is to propose a torque vectoring control system for improving the handling stability of distributed drive electric buses under complicated driving conditions. Energy crisis and environment pollution are two key pressing issues faced by mankind. Pure electric buses are recognized as the effective method to solve the problems. Distributed drive electric buses (DDEBs) as an emerging mode of pure electric buses are attracting intense research interests around the world. Compared with the central driven electric buses, DDEB is able to control the driving and braking torque of each wheel individually and accurately to significantly enhance the handling stability. Therefore, the torque vectoring control (TVC) system is proposed to allocate the driving torque among four wheels reasonably to improve the handling stability of DDEBs. Design/methodology/approach The proposed TVC system is designed based on hierarchical control. The upper layer is direct yaw moment controller based on feedforward and feedback control. The feedforward control algorithm is designed to calculate the desired steady-state yaw moment based on the steering wheel angle and the longitudinal velocity. The feedback control is anti-windup sliding mode control algorithm, which takes the errors between actual and reference yaw rate as the control variables. The lower layer is torque allocation controller, including economical torque allocation control algorithm and optimal torque allocation control algorithm. Findings The steady static circular test has been carried out to demonstrate the effectiveness and control effort of the proposed TVC system. Compared with the field experiment results of tested bus with TVC system and without TVC system, the slip angle of tested bus with TVC system is much less than without TVC. And the actual yaw rate of tested bus with TVC system is able to track the reference yaw rate completely. The experiment results demonstrate that the TVC system has a remarkable performance in the real practice and improve the handling stability effectively. Originality/value In view of the large load transfer, the strong coupling characteristics of tire , the suspension and the steering system during coach corning, the vehicle reference steering characteristics is defined considering vehicle nonlinear characteristics and the feedforward term of torque vectoring control at different steering angles and speeds is designed. Meanwhile, in order to improve the robustness of controller, an anti-integral saturation sliding mode variable structure control algorithm is proposed as the feedback term of torque vectoring control.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6306
Author(s):  
Jaewon Nah ◽  
Seongjin Yim

To enhance vehicle maneuverability and stability, a controller with 4-wheel steering (4WS), electronic stability control (ESC) and a torque vectoring device (TVD) under constraint on the front slip angles is designed in this research. In the controller, the control allocation method is adopted to generate yaw moment via 4WS, ESC and TVD. If the front steering angle is added for generating yaw moment, the steering performance of the vehicle can be further deteriorated. This is because the magnitude of the lateral tire forces are limited and the required yaw moment is insufficient. Constraint is imposed on the magnitude of the front slip angles in order to prevent the lateral tire forces from saturating. The driving simulation is performed by considering the limit of the front slip angle proposed in this study. Compared to the case that uses the existing 4WS, the results of this study are derived from the actuator combination that enhances performance while maintaining stability.


Author(s):  
Henrique de CarvalhoPinheiro ◽  
Elisabetta Punta ◽  
Massimiliana Carello ◽  
Alessandro Ferraris ◽  
Andrea Giancarlo Airale

Sign in / Sign up

Export Citation Format

Share Document