stability performance
Recently Published Documents


TOTAL DOCUMENTS

576
(FIVE YEARS 187)

H-INDEX

25
(FIVE YEARS 6)

Author(s):  
Si-Ming Zhou ◽  
Jing-Zhong Tong ◽  
Gen-Shu Tong ◽  
Zhang Lei ◽  
Xiang Jiang ◽  
...  

Concrete-filled steel tubular (CFST) column has been widely used in engineering practice. In the process of assembling two columns to form a slender member, assembling errors (AE) are inevitably produced at the section of connection. When the AE are too large, the global buckling resistance of slender column would be significantly affected. Therefore, it is necessary to investigate the influence of AE on the stability performance of slender CFST columns. In this study, an axial compressive test involving three CFST columns with AE (AE-CFST columns) was conducted. A refined finite element (FE) model is established for further parametric analysis. Based on a simplified analytical model by analyzing the isolated steel connecting plate, a theoretical formula is proposed for predicting the critical thickness [Formula: see text] of the connecting plate. When the thickness [Formula: see text] of the connecting plate meets its requirement, the failure at the section of connection caused by AE could be effectively prevented. Stability design curves considering the influence of AE ratio (the ratio between assembling error and sectional depth of column) are proposed based on numerous FE examples. It is found that the proposed design curves are reliable for the design of AE-CFST columns with different AE ratios.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 263
Author(s):  
Odi Fawwaz Alrebei ◽  
Abdulkarem I. Amhamed ◽  
Syed Mashruk ◽  
Phil Bowen ◽  
Agustin Valera Medina

Strict regulations and acts have been imposed to limit NOx and carbon emissions. The power generation industry has resorted to innovative techniques to overcome such a low level of tolerance. Amongst those in the literature, CO2-argon-steam oxyfuel (CARSOXY) gas turbines have theoretically been proven to offer an economically sustainable solution while retaining high efficiency. Although theoretical studies have characterized CARSOXY, no experimental evidence has been provided in the literature. Therefore, this paper attempts to experimentally assess CARSOXY in comparison to a CH4/air flame. OH* chemiluminescence integrated with OH Planar Laser-Induced Fluorescence (PLIF) imaging has been utilized to study flame stability and flame geometry (i.e., the area of highest heat intensity (AOH¯Max center of highest heat intensity (COH¯Max)) over a range of working fluid Reynolds’ numbers and oxidizing equivalence ratios. In addition, the standard deviation of heat release fluctuations (σOH*/OH¯) has been utilized as the base-criteria to compare the stability performance of CARSOXY to CH4/air combustion. Moreover, turbulence-chemistry interactions have been described using Damköhler numbers and by plotting Borghi regime diagrams. This paper suggests a modified numerical approach to estimate Damköhler numbers and plot regime diagrams for non-premixed combustion by utilizing the Buckingham π theorem based on experimental observations and results. CARSOXY flames showed lower flame intensity than that of the CH4/air flame throughout the entire Re interval by approximately 16%, indicating higher heat release. The Damköhler numbers of the CARSOXY flame were also greater than those of the CH4/air flame in all conditions, indicating more uniform CARSOXY flames. It was found that the tendency of the CARSOXY flame of approaching the concentrated reaction zone is greater than that of the CH4/air flame.


Author(s):  
A Neville ◽  
R McLaren ◽  
J Weber ◽  
C Chin ◽  
J Binns ◽  
...  

An articulated concrete mattress model has been utilised to investigate the effects of reduced vertical centre of gravity on the stability of a 400 series block. Experimental testing was conducted at the AMC CWC, Beauty Point. To determine the effects that a reduced centre of gravity has on stability, the 3 by 3 articulated concrete mattress model was subject to pure uniform current flow. The subsequent forces were analysed with a six degree of freedom underwater force sensor. In order to gain a range of real world scenarios, the experimental model was tested at six flow angles ranging from -15 degrees through to 60 degrees, at 15 degree increments. Additionally, five fluid velocities starting at 0.6 m/s through to 1.4 m/s, at 0.2 m/s increments were investigated. These results explain how the inversion of a 400 series block increases its hydrodynamic coefficients and subsequently decreases its stability performance in current flow. Ultimately, this study provides experimental information for the installation of 400 series articulated concrete mattresses in the inverted orientation.


2021 ◽  
Vol 9 (12) ◽  
pp. 1416
Author(s):  
Nicola Petacco ◽  
Danilo Pitardi ◽  
Carlo Podenzana Bonvino ◽  
Paola Gualeni

A methodology is presented to systematically modify the hull shape of a ballast-free container ship, in order to manage the issue of righting lever variation in waves. The IMO second generation intact stability criteria have been identified as a stability performance assessment tool, while the vertical prismatic coefficient has been selected as the leading parameter of hull modifications to carry out the sensitivity analysis. A revised Lackenby procedure has been chosen to make systematic changes at the hull form. The outcomes of this investigation point out that the proposed procedure is suitable to enable the ship to be fully compliant with the IMO vulnerability levels with minor design adjustment.


2021 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Mohsin Kazi

The development of phytochemistry and phyto-pharmacology has enabled elucidation of composition and biological activities of several medicinal plant constituents. However phytoconstituents are poorly absorbed due to their low aqueous solubility, large molecular size and poor membrane permeability when taken orally. Nanotechnology based drug delivery systems can be used to improve the dissolution rate, permeability and stability of these phytoconstituents. The current chapter aims to present the extraction of phytoconstituents, their identifications, and development/utilization of phospholipid based nano drug delivery systems (PBNDDS). The content of the chapter also provides characteristic features, in-vitro, in-vivo evaluations and stability performance of PBNDDS. The results from the UHPLC and GC-MS showed different phytoconstituents in the extracted samples with quantitative value. Dynamic light scattering (DLS) data showed PBNDDS of different phytoconstituents in the range of 50–250 nm with PDI value of 0.02–0.5, which was also confirmed by the electron microscopic data. Phytoconstituents loading or entrapment for PBNDDS was in the range of 60–95%. PBNDDS exhibited better in-vitro and in-vivo performance with improved Physico-chemical stability.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2512
Author(s):  
Bruno Franceschetti ◽  
Valda Rondelli ◽  
Enrico Capacci

A tractor losing lateral stability starts to rollover. It is a matter of fact that tractor lateral rollover accidents are one of the most frequent causes of death and injuries for farmers. Consequently, tractors are fitted with a specific protective structure to minimize the consequences for the driver during the rollover (ROPS). The narrow-track tractor, designed to operate in vineyards and orchards, is a tractor category with a very narrow track width and the risk of rollover is higher. The aim of the study was to evaluate the compact narrow-track tractor types commercially available, designed to mount a cantilever engine in the forward position with effects on the Center of Gravity (CoG) because more than 50% of the tractor weight is loaded on the front axle, and, specifically, the articulated narrow-track tractors where the stability is affected by the pivot point connecting the two tractor bodies. As a consequence of the typical tractor design of articulated tractors, during the steering action the line passing through the front and rear tire contact points on the ground changes, influencing the tractor’s stability. The approach of the research was based on reproducing the lateral stability tractor condition by developing a kinematic model, with the goal to virtually simulate the tractor behavior and to calculate the lateral stability angle for articulated tractors. The innovative contribution of this paper was the tractor articulation joint modeling, assuming a virtual pivot point to reproduce two relatives’ rotations between the front and rear bodies of the tractor: vertical (yaw angle) and longitudinal (roll angle) rotations. The lowest value of the stability angle was 39.3°, measured at −35° yaw angle. The model at the tractor design stage will allow adjusting of the tractor parameters to improve the lateral stability performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-25 ◽  
Author(s):  
Peng Li ◽  
Fang Zeng ◽  
Sen Xiao ◽  
Dong Zhen ◽  
Hao Zhang ◽  
...  

The purpose of this paper is to numerically study the effect of texture bottom profile on static, dynamic, and stability performance parameters of hydrodynamic journal bearings. The different performance parameters of square textured journal bearings with different bottom profiles are numerically investigated and compared with those of smooth journal bearing. There are five bottom profiles of this square texture: flat, curved, isosceles triangle (T1), oblique triangle (T2), and oblique triangle (T3). The static and dynamic coefficients are calculated by solving the steady-state Reynolds equation and the perturbation equations with FDM numerical technique. The performance characteristics under different texture distribution, depth, and bottom profiles are studied, and the current numerical results show that the selection of texture parameters is crucial to improve the static, dynamic, and stability performances of hydrodynamic journal bearing. Meanwhile, it is also found that the square texture with a flat bottom profile has a higher improvement in the values of static performance parameters in comparison to those other bottom profiles. Moreover, the simulation results indicate that the dynamic and stability performances improvement of textured journal bearing is also significant, especially when the eccentricity ratio is smaller.


2021 ◽  
Vol 10 (6) ◽  
pp. 3094-3101
Author(s):  
Shilpi Birla ◽  
Neha Singh ◽  
Neeraj K. Shukla ◽  
Sidharth Sharma

Due to the scaling of the CMOS, the limitations of these devices raised the need for alternative nano-devices. Various devices are proposed like FinFET, TFET, CNTFET. Among these, the FinFET emerges as one of the promising devices which can replace the CMOS due to its low leakage in the nanometer regime. The electronics devices are nowadays more compact and efficient in terms of battery consumption. The CMOS SRAMs have been replaced by the FinFET SRAMs due to the scaling limitations of the CMOS. Two FinFET SRAM cells have been which power efficient are and having high stability. Performance comparison of these cells has been done to analyze the leakage power and the static noise margins. The simulation of the cells is done at 20 nm FinFET technology. It has been analyzed that the write margin of improved 9T SRAM cell achieves an improvement of 1.49x. The read margin is also showing a drastic improvement over the existing cells which has been compared in the paper. The hold margin was found to be better in the case of the proposed SRAM cell at 0.4 V. The gate length has been varied to find the effect on read margin with gate length.


2021 ◽  
Vol 10 (6) ◽  
pp. 3019-3031
Author(s):  
N. A. A. Razali ◽  
Nor Maniha Abdul Ghani ◽  
Bifta Sama Bari

The current study emphasizes on improving an interval type-2 fuzzy logic control (IT2FLC) system through the use of spiral dynamics algorithm (SDA) optimization in stabilizing a transformational two-wheeled wheelchair. The main contribution of this research is to reduce vibrations while performing the lifting and stabilization of a wheelchair from its standard four-wheeled to two-wheeled transformation. IT2FLC based SDA was used to enhance the system’s stability performance by obtaining the optimized value for input and output controller gains and IT2FLC parameters for IT2FLC. System modeling was done through development within the SimWise 4D software environment, which was then integrated with MATLAB/SIMULINK for control purposes. The proposed algorithm has demonstrated improved tilt angle performance with reduced noise and lower torque when various disturbances were applied, as compared to a system solely controlled by IT2FLC without any optimization. Moreover, the proposed algorithm has also comprehensively outperformed previous controllers in terms of system’s stability, further demonstrated its superiority as a system controller within transformational wheelchairs.


Sign in / Sign up

Export Citation Format

Share Document