Trust-Based Optimal Subtask Allocation and Model Predictive Control for Human-Robot Collaborative Assembly in Manufacturing

Author(s):  
S. M. Mizanoor Rahman ◽  
Behzad Sadrfaridpour ◽  
Yue Wang

We develop a one human-one robot hybrid cell for collaborative assembly in manufacturing. The selected task is to assemble a few LEGO parts into a final assembled product following specified instructions and sequence in collaboration between the human and the robot. We develop a two-level feedforward optimization strategy that determines the optimal subtask allocation between the human and the robot for the selected assembly before the assembly starts. We derive dynamics models for human’s trust in the robot and the robot’s trust in the human for the assembly and estimate the trusts. The aim is to maintain satisfactory trust levels between the human and the robot through the application of the optimal subtask allocation. Again, subtask re-allocation is proposed to regain trusts if the trusts reduce to below the specified levels. Furthermore, it is hypothesized that fluctuations in human’s trust in the robot may cause fluctuations in human’s speeds and the human may appreciate if the robot adjusts its speeds with changes in human speeds. Hence, trust-based Model Predictive Control (MPC) is proposed to minimize the variations between human and robot speeds and to maximize the trusts. Experiment results prove the effectiveness of the hybrid cell, the feedforward optimal subtask allocation and of the trust-based MPC. The results also show that the overall assembly performance can be enhanced and the performance status can be monitored through a single dynamic parameter, i.e. the trust.

2018 ◽  
Vol 8 (3) ◽  
pp. 408 ◽  
Author(s):  
Radu Godina ◽  
Eduardo Rodrigues ◽  
Edris Pouresmaeil ◽  
João Matias ◽  
João Catalão

2021 ◽  
pp. 027836492199279
Author(s):  
Roya Sabbagh Novin ◽  
Amir Yazdani ◽  
Andrew Merryweather ◽  
Tucker Hermans

Assistive robots designed for physical interaction with objects will play an important role in assisting with mobility and fall prevention in healthcare facilities. Autonomous mobile manipulation presents a hurdle prior to safely using robots in real-life applications. In this article, we introduce a mobile manipulation framework based on model predictive control using learned dynamics models of objects. We focus on the specific problem of manipulating legged objects such as those commonly found in healthcare environments and personal dwellings (e.g., walkers, tables, chairs). We describe a probabilistic method for autonomous learning of an approximate dynamics model for these objects. In this method, we learn dynamic parameters using a small dataset consisting of force and motion data from interactions between the robot and object. Moreover, we account for multiple manipulation strategies by formulating manipulation planning as a mixed-integer convex optimization. The proposed framework considers the hybrid control system composed of (i) choosing which leg to grasp and (ii) control of continuous applied forces for manipulation. We formalize our algorithm based on model predictive control to compensate for modeling errors and find an optimal path to manipulate the object from one configuration to another. We present results for several objects with various wheel configurations. Simulation and physical experiments show that the obtained dynamics models are sufficiently accurate for safe and collision-free manipulation. When combined with the proposed manipulation planning algorithm, the robot successfully moves the object to the desired pose while avoiding any collision.


Sign in / Sign up

Export Citation Format

Share Document