Output Feedback Control Synthesis for a Helicopter Using Explicit Nonlinear Model Predictive Control, Dynamic Inversion and Extended High Gain Observers

Author(s):  
Joohwan Seo ◽  
Jongeun Choi

Abstract Control design for a helicopter is a challenging problem because of its non-affine inputs, complicated dynamics and it is an under-actuated system. To solve a control problem of the helicopter under model uncertainties and disturbance present environments, an Explicit Nonlinear Model Predictive Control (ENMPC), a dynamic inversion and an Extended High-Gain Observers (EHGO) are combined in a multi-time-scale fashion. The multi-time scaled structrue and the ENMPC provides the framework of the control design, the dynamic inversion deals with non-affine control inputs, and the EHGO estimates the unmeasured states and uncertainties. In addition, a discretization scheme using the saturation and adding low pass filters to the control inputs is presented. Finally, the numerical simulation of a fixed sampling period has been carried out to demonstrate the validity of the proposed multi-time-scale control design and the discretization scheme.

2019 ◽  
Vol 42 (2) ◽  
pp. 214-227 ◽  
Author(s):  
Nadia Miladi ◽  
Habib Dimassi ◽  
Salim Hadj Said ◽  
Faouzi M’Sahli

In this paper, we propose an explicit nonlinear model predictive control (ENMPC) method based on a robust observer to solve the trajectory tracking problem for outdoor quadrotors. We take into consideration the external aerodynamic disturbances present in the dynamics of the Newton-Euler quadrotor model. To overcome the effects of these disturbances, a high gain observer combined with a first order sliding mode observer are proposed to estimate both the states and the unknown disturbances using the only positions and angular measurements of the quadrotor. The estimated signals are then used by the predictive controller in order to ensure the trajectory tracking objective. Despite the presence of bounded disturbances, the convergence of the composite controller (ENMPC technique with the latter observers) is guaranteed through a stability analysis. Theoretical results are validated with some numerical simulations showing the good performances of the proposed tracking control approach.


2001 ◽  
Vol 34 (25) ◽  
pp. 83-88 ◽  
Author(s):  
Lars Imsland ◽  
Rolf Findeisen ◽  
Eric Bullinger ◽  
Frank Allgöwer ◽  
Bjarne A. Foss

Sign in / Sign up

Export Citation Format

Share Document