scholarly journals The Development of the Heliostat Focusing and Canting Enhancement Technique: An Optical Heliostat Alignment Tool for the National Solar Thermal Test Facility

Author(s):  
Evan Sproul ◽  
Kyle Chavez ◽  
Julius Yellowhair

A heliostat array is a field of heliostats that focuses sunlight continuously on a central receiver in a power tower solar concentration system. Each heliostat consists of a structurally mounted mirror surface capable of reflecting sunlight onto a given target throughout the day. Typically, most heliostats are actually a group of individual mirror facets on a single moving frame. To achieve highly concentrated solar flux on a central receiver, each heliostat mirror facet has to be properly aligned (both canted and focused) when attached to the heliostat frame. In order to accurately evaluate and correct heliostat facet alignment, Sandia National Laboratories (SNL) and New Mexico Tech (NMT) have developed the Heliostat Focusing and Canting Enhancement Technique (H-FACET), a new and unique heliostat alignment tool that allows technicians to make fast and effective adjustments to facet canting and focusing. H-FACET uses a high resolution digital camera mounted on top of a receiver tower to observe the image of a stationary target reflected by a heliostat. Custom image processing software compares specific measurement points on the actual target reflection image with the corresponding measurement points on an ideally reflecting heliostat. Deviations between the actual and ideal reflection points reveal facet misalignments. Additionally, a live image of the ideal and theoretical points provides real-time feedback during the alignment correction process. SNL has implemented H-FACET at the National Solar Thermal Test Facility (NSTTF). Technicians have used the canting portion of the software to successfully cant a large section of the SNL NSTTF heliostat field. Visual inspections of reflected heliostat beam patterns have demonstrated noticeable improvements in beam size and shape resulting from the use of H-FACET. Preliminary quantitative analyses of H-FACET have shown beam diameter reductions of up to fifty percent. The beam reductions resulting from the use of H-FACET will assist in minimizing beam spillage and increasing flux densities. As a result, H-FACET may be a valuable tool in increasing the annual performance of a heliostat field. This paper details the computational algorithms used in H-FACET. These algorithms include accurate models of heliostat field geometries, sun position, facet orientations and facet shapes. This paper also discusses the optical methods used to determine the orientations and surface shapes of ideally aligned facets. Lastly, it investigates probable sources of error and ways to improve H-FACET.

Author(s):  
Kyle Chavez ◽  
Evan Sproul ◽  
Julius Yellowhair

Central receiver power towers are regarded as a proven concentrating solar power (CSP) technology for generating utility-scale electricity. In central receiver systems, improper alignment (canting and focusing) of heliostat facets results in beam spillage at the receiver and leads to significant degradation in performance. As a result, proper alignment of heliostats is critical for increasing plant efficiency. Past tools used for analyzing and correcting heliostat alignment at the National Solar Thermal Test Facility (NSTTF) have proven to be laborious and inaccurate, sometimes taking up to six hours per heliostat. In light of these drawbacks, Sandia National Labs (SNL) and New Mexico Tech (NMT) have created the Heliostat Focusing and Canting Enhancement Technique (H-FACET). H-FACET uses a high-resolution digital camera to observe the image of a stationary target reflected by a heliostat facet. By comparing this image to a theoretical image generated via a custom software package, technicians can efficiently identify and correct undesirable deviations in facet orientation and shape. Previous tests have only proven the viability of H-FACET for canting heliostats. As a result, SNL and NMT have expanded H-FACET’s capabilities and analyzed the system’s ability to simultaneously cant and focus heliostats. Initial H-FACET focusing test results have shown improved beam sizes and shapes for single facets. Furthermore, simulations of these tests revealed an approximated system accuracy of better than 1.80 milliradians. This accuracy accounted for technician, position, and additional error sources, suggesting that H-FACET was capable of focusing facets to an even greater accuracy than those seen in the initial tests. When implemented for simultaneous canting and focusing of heliostats, H-FACET has demonstrated its capability to increase peak flux and decrease beam size. These full alignment test results demonstrated an average total system accuracy of 1.17 milliradians on five heliostats. As before, this accuracy included multiple error sources which cannot be corrected by H-FACET. Additionally, these tests revealed that H-FACET can align heliostats in about 1 hour and 30 minutes. Finally, two heliostats aligned with H-FACET maintained average accuracies 1.46 and 1.24 milliradians over a four hour window centered about solar noon. This implies that H-FACET is capable of aligning heliostats to a true off-axis alignment over NSTTF’s operating window. In light of these results, SNL has implemented both the focusing and canting portions of H-FACET at the NSTTF.


Author(s):  
Clifford K. Ho ◽  
Siri S. Khalsa

A new method is described to determine irradiance distributions on receivers and targets from heliostats or other collectors for concentrating solar power applications. The method uses a CCD camera, and, unlike previous beam characterization systems, it does not require additional sensors, calorimeters, or flux gauges on the receiver or target. In addition, spillage can exist (the beam does not need to be contained within the target). The only additional information required besides the digital images recorded from the CCD camera is the direct normal irradiance and the reflectivity of the receiver. Methods are described to calculate either an average reflectivity or a reflectivity distribution for the receiver using the CCD camera. The novel feature of this new PHLUX method is the use of recorded images of the sun to scale both the magnitude of each pixel value and the subtended angle of each pixel. A test was performed to evaluate the PHLUX method using a heliostat beam on the central receiver tower at the National Solar Thermal Test Facility in Albuquerque, NM. Results showed that the PHLUX method was capable of producing an accurate flux map of the heliostat beam with a relative error in the peak flux of 2%.


1994 ◽  
Vol 116 (3) ◽  
pp. 137-141 ◽  
Author(s):  
D. C. Smith ◽  
E. E. Rush ◽  
C. W. Matthews ◽  
J. M. Chavez ◽  
P. A. Bator

The molten salt pump and valve (P&V) test loops at Sandia National Laboratories (SNL) National Solar Thermal Test Facility (NSTTF) operated between Jan. 1988 and Oct. 1990. The purpose of the P&V test was to demonstrate the performance, reliability, and service life of full-scale hot and cold salt pumps and valves for use in commercial central receiver solar power plants. The P&V test hardware consists of two pumped loops; the “Hot Loop” to simulate the hot (565°C) side of the receiver and the “Cold Loop” to simulate the receiver’s cold (285°C) side. Each loop contains a pump and five valves sized to be representative of a conceptual 60-MWe commercial solar power plant design. The hot loop accumulated over 6700 hours of operation and the cold loop over 2500 hours of operation. This project has demonstrated that standard commercial scale pump and valve designs will work in molten salt. The test also exposed some pitfalls that must be avoided in specifying such equipment. Although certainly not all of the pitfalls were discovered, careful design and specification should result in reliable or at least workable equipment.


Sign in / Sign up

Export Citation Format

Share Document