Fully Resolved Simulation of Particulate Flow Using a Sharp Interface Direct Forcing Immersed Boundary Method

Author(s):  
Jianming Yang ◽  
Frederick Stern

In this paper, the sharp interface, direct forcing immersed boundary method developed by Yang and Stern (A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions, J. Comput. Phys. 231 (2012) 5029–5061) is applied to the fully resolved simulation of particulate flow. This method uses a discrete forcing approach and maintains a sharp profile of the fluid/solid interface. Also, it employs a strong coupling scheme for fluid-structure interaction through a predictor-corrector algorithm. The fluid flow solver is not included in the predictor-corrector iterative loop thanks to the direct forcing idea, which makes the overall algorithm highly efficient and very attractive for the fully resolved simulation of particulate flow with numerous solid particles. Several cases including sedimenting and buoyant particles and the interaction of two sedimenting particles showing kissing, drafting, and tumbling phenomenon are examined and compared with the reference results to demonstrate the simplicity and applicability of our method in particulate flow simulations.

Author(s):  
Long He ◽  
Keyur Joshi ◽  
Danesh Tafti

In this work, we present an approach for solving fluid structure interaction problems by combining a non-linear structure solver with an incompressible fluid solver using immersed boundary method. The implementation of the sharp-interface immersed boundary method with the fluid solver is described. A structure solver with the ability to handle geometric nonlinearly is developed and tested with benchmark cases. The partitioned fluid-structure coupling algorithm with the strategy of enforcing boundary conditions at the fluid/structure interaction is given in detail. The fully coupled FSI approach is tested with the Turek and Hron fluid-structure interaction benchmark case. Both strong coupling and weak coupling algorithms are examined. Predictions from the current approach show good agreement with the results reported by other researchers.


Author(s):  
Xing Zhang ◽  
Xiaojue Zhu ◽  
Guowei He

Simulation of fluid-structure interaction (FSI) of flexible bodies are challenging due to complex geometries and freely moving boundaries. Immersed boundary method has found to be an efficient technique for dealing with FSI problems because of the use of non-body-fitted mesh and simple implementation. In the present work, we developed a FSI solver by coupling a direct forcing immersed boundary method for the fluid with a finite difference method of the structure. Several flow problems are simulated to validate our method. The testing cases include flow over a stationary cylinder and flat plate, two-dimensional flow past an inextensible flexible filament and three-dimensional flow past a flag. The results obtained agree well with those from previously published literatures.


Author(s):  
Jianming Yang ◽  
Frederick Stern

In this paper, a direct forcing immersed boundary method is presented for the simple and efficient simulation of strongly coupled fluid-structure interaction. The previous formulation by Yang and Balaras (An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, J. Comput. Phys. 215 (2006) 12–40) is greatly simplified without sacrificing the overall accuracy. The fluid-structure coupling scheme of Yang et al. (A strongly-coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies, J. Fluids Struct. 24 (2008) 167–182) is also significantly expedited without altering the strong coupling property. Several cases are examined and compared with the results from the previous formulations to demonstrate the accuracy, simplicity and efficiency of the new method.


2018 ◽  
Vol 175 ◽  
pp. 111-128 ◽  
Author(s):  
R.V. Maitri ◽  
S. Das ◽  
J.A.M. Kuipers ◽  
J.T. Padding ◽  
E.A.J.F. Peters

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Xiaojue Zhu ◽  
Guowei He ◽  
Xing Zhang

In the present work, we present an improved version of the direct-forcing immersed boundary (IB) method proposed in Wang and Zhang (2011, “An Immersed Boundary Method Based on Discrete Stream Function Formulation for Two- and Three-Dimensional Incompressible Flows,” J. Comput. Phys., 230(9), pp. 3479–3499). In order to obtain an accurate prediction of local surface force, measures have been taken to suppress the unphysical spatial oscillations in the Lagrangian forcing. A fluid-structure interaction (FSI) solver has been developed by using the improved IB method for the fluid and the finite difference method for the structure. Several flow problems are simulated to validate our method. The testing cases include flows over a stationary cylinder and a stationary flat plate, two-dimensional flow past an inextensible flexible filament, and three-dimensional flow past a flapping flag. The results obtained in the present work agree well with those from the literature.


Sign in / Sign up

Export Citation Format

Share Document