Numerical Study of Aerodynamic Forces of Two Airfoils in Tandem Configuration at Low Reynolds Number

2021 ◽  
Author(s):  
N. Hosseini ◽  
M. Tadjfar ◽  
A. Abba

Abstract For a tandem airfoil configuration, an airfoil is placed in the wake of an upstream airfoil. This interaction affects the aerodynamic forces of the airfoils, especially the downstream one. In the present study a tandem configuration consists of an upstream pitching airfoil and a downstream stationary airfoil is investigated. This study aims to investigate the role of reduced frequency and pitch amplitude of the upstream airfoil’s motion on lift and drag coefficients of two airfoils. These two parameters play an important role in the formation of vortices. The investigation is done for Selig-Donovan 7003 (SD7003) airfoils at low Reynolds number of 30,000 using a computational fluid dynamics. Incompressible URANS equations were employed for solving the flow field. It was found that for a fixed reduced frequency of 0.5 thrust is produced on the hindfoil for a part of cycle for different pitch amplitudes from light to deep stall while for a fixed pitch amplitude at different reduced frequencies high level of thrust or drag can be produced. The reason is related to the type and intensity of vortex-blade interaction.

Author(s):  
Mojtaba Honarmand ◽  
Mohammad Hassan Djavareshkian ◽  
Behzad Forouzi Feshalami ◽  
Esmaeil Esmaeilifar

In this research, viscous, unsteady and turbulent fluid flow is simulated numerically around a pitching NACA0012 airfoil in the dynamic stall area. The Navier-Stokes equations are discretized based on the finite volume method and are solved by the PIMPLE algorithm in the open source software, namely OpenFOAM. The SST k - ω model is used as the turbulence model for Low Reynolds Number flows in the order of 105. A homogenous dynamic mesh is used to reduce cell skewness of mesh to prevent non-physical oscillations in aerodynamic forces unlike previous studies. In this paper, the effects of Reynolds number, reduced frequency, oscillation amplitude and airfoil thickness on aerodynamic force coefficients and dynamic stall delay are investigated. These parameters have a significant impact on the maximum lift, drag, the ratio of aerodynamic forces and the location of dynamic stall. The most important parameters that affect the maximum lift to drag coefficient ratio and cause dynamic stall delaying are airfoil thickness and reduced frequency, respectively.


Sign in / Sign up

Export Citation Format

Share Document