naca0012 airfoil
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 80)

H-INDEX

14
(FIVE YEARS 2)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 272
Author(s):  
Chenyu Wu ◽  
Haoran Li ◽  
Yufei Zhang ◽  
Haixin Chen

The accuracy of an airfoil stall prediction heavily depends on the computation of the separated shear layer. Capturing the strong non-equilibrium turbulence in the shear layer is crucial for the accuracy of a stall prediction. In this paper, different Reynolds-averaged Navier–Stokes turbulence models are adopted and compared for airfoil stall prediction. The results show that the separated shear layer fixed k−v2¯−ω (abbreviated as SPF k−v2¯−ω) turbulence model captures the non-equilibrium turbulence in the separated shear layer well and gives satisfactory predictions of both thin-airfoil stall and trailing-edge stall. At small Reynolds numbers (Re~105), the relative error between the predicted CL,max of NACA64A010 by the SPF k−v2¯−ω model and the experimental data is less than 3.5%. At high Reynolds numbers (Re~106), the CL,max of NACA64A010 and NACA64A006 predicted by the SPF k−v2¯−ω model also has an error of less than 5.5% relative to the experimental data. The stall of the NACA0012 airfoil, which features trailing-edge stall, is also computed by the SPF k−v2¯−ω model. The SPF k−v2¯−ω model is also applied to a NACA0012 airfoil, which features trailing-edge stall and an error of CL relative to the experiment at CL>1.0 is smaller than 3.5%. The SPF k−v2¯−ω model shows higher accuracy than other turbulence models.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 457
Author(s):  
Al Habib Ullah ◽  
Kristopher L. Tomek ◽  
Charles Fabijanic ◽  
Jordi Estevadeordal

An experimental investigation regarding the dynamic stall of various swept wing models with pitching motion was performed to analyze the effect of sweep on the dynamic stall. The experiments were performed on a wing with a NACA0012 airfoil section with an aspect ratio of AR = 4. The experimental study was conducted for chord-based Reynolds number Rec =2×105 and freestream Mach number Ma=0.1. First, a ‘particle image velocimetry’ (PIV) experiment was performed on the wing with three sweep angles, Λ=0o, 15o, and 30o, to obtain the flow structure at several wing spans. The results obtained at a reduced frequency showed that a laminar separation bubble forms at the leading edge of the wing during upward motion. As the upward pitching motion continues, a separation burst occurs and shifts towards the wing trailing edge. As the wing starts to pitch downward, the growing dynamic stall vortex (DSV) vortex sheds from the wing’s trailing edge. With the increasing sweep angle of the wing, the stall angle is delayed during the dynamic motion of the wing, and the presence of DSV shifts toward the wingtip. During the second stage, a ‘turbo pressure-sensitive paint’ (PSP) technique was deployed to obtain the phase average of the surface pressure patterns of the DSV at a reduced frequency, k=0.1. The phase average of pressure shows a distinct pressure map for two sweep angles, Λ=0o, 30o, and demonstrates a similar trend to that presented in the published computational studies and the experimental data obtained from the current PIV campaign.


2021 ◽  
Vol 11 (24) ◽  
pp. 11618
Author(s):  
Weidong Shi ◽  
Zhouhao Shi ◽  
Zhanshan Xie ◽  
Qinghong Zhang ◽  
Yongfei Yang ◽  
...  

In order to suppress the cavitation of an airfoil under random operating conditions, a deformable covering was constructed in the cavitation prone area of the NACA0012 airfoil. By sensing the pressure difference between the inner and outer sides of the airfoil, the covering of the airfoil can be changed adaptively to meet the requirement of suppressing random cavitation of the airfoil. The simulation results show that the cavitation influence range of the airfoil with a shape memory alloy covering can be reduced by more than 70%, and the cavitation is well reduced and suppressed. Moreover, the backflow near the wall of the airfoil was reduced under random working conditions. When the maximum bulge deformation of the covering was between 3–6 mm, the airfoil produced a cavitation range only on the covering surface of the airfoil, and there was no cavitation erosion on other parts. This method with locally variable airfoil to suppress cavitation provides a good reference value for other hydraulic machinery to suppress cavitation.


2021 ◽  
Vol 11 (22) ◽  
pp. 10920
Author(s):  
Junjun Jin ◽  
Zhiliang Lu ◽  
Tongqing Guo ◽  
Di Zhou ◽  
Qiaozhong Li

Dynamic stall in clean air flow has been well studied, but its exploration in air–particle (air–raindrop or air–sand) flow is still lacking. The aerodynamic performance loss of aircraft (NACA0012) and wind turbine (S809) airfoils and their differences during the hysteresis loop at different pitching parameters are also poorly understood. As shown in this paper, the reduced frequency has little effect on the value of the maximum lift coefficient increment caused by particles, but a larger one can enhance the hysteresis effect and drag the angle of attack, at which the maximum increment is obtained, from the up stroke to the down stroke. The large lift coefficient increments of two airfoils and their difference also have a similar change trend with the reduced frequency. Compared to that of NACA0012 airfoil, the increments of S809 airfoil are obviously greater at three mean angles of attack, especially at 8°, which is the commonly used operating angle. In addition, the angle of attack, at which the maximum lift coefficient is obtained, can be significantly changed by particles in two regions: one is under the effect of deep stall, the other is under the effect of light stall at a low, reduced frequency.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 294
Author(s):  
Koji Fukudome ◽  
Yuki Tomita ◽  
Sho Uranai ◽  
Hiroya Mamori ◽  
Makoto Yamamoto

Heating devices on airfoil surfaces are widely used as an anti-icing technology. This study investigated the aerodynamic performance with a static heating surface based on the modified extended Messinger model. The predicted ice shape was validated through a comparison with the experimental results for HAARP-II. A reasonable agreement was found for both the icing area and the ice mass on the suction surface. Then, the prediction method was adopted for an NACA0012 airfoil at an attack angle of 4.0∘ under a glaze ice condition. An asymmetric heating area was imposed on the suction and pressure surfaces considering a temperature of 10∘C near the leading edge. As a result of heating, the round ice formation when was no longer observed, and the formed ice volume decreased. However, bump-shaped pieces of ice were formed downstream of the heater owing to runback water; these bump-shaped pieces of ice formed on the suction surface significantly increased the flow drag and reduced the lift. The results indicated that extending the heating area on the suction surface can improve the aerodynamic performance. Consequently, the overall aerodynamic performance is deteriorated by adding static heating compared to the case without heating.


AIAA Journal ◽  
2021 ◽  
pp. 1-15
Author(s):  
Laura Victoria Rolandi ◽  
Thierry Jardin ◽  
Jérôme Fontane ◽  
Jérémie Gressier ◽  
Laurent Joly

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5582
Author(s):  
Rong Han ◽  
Wei Liu ◽  
Xiao-Liang Yang ◽  
Xing-Hua Chang

The flow past a cylinder is a classical problem in flow physics. In a certain range of Reynolds number, there will be Karman vortex street phenomenon in the wake of a cylinder, which will greatly increase the pressure drag of the cylinder. By controlling the vortex shedding phenomenon, drag reduction of the cylinder could be effectively realized. In this paper, a NACA0012 airfoil with pitching oscillation is placed downstream of the cylinder. Based on the tight coupling method, kinematics equations and Navier–Stokes equations in the arbitrary Lagrangian–Eulerian form are solved. Firstly, the effect of airfoil oscillation period and the distance between airfoil leading edge and cylinder center (x/D) are studied respectively, especially considering the aspects of vortex shedding and drag reduction effect. Besides, the vortex interaction in the flow field around the airfoil and cylinder is analyzed in detail. It is found that the NACA0012 airfoil with pitching oscillation can change the period of vortex shedding. Moreover, it can also increase the drag reduction rate to as high as 50.5%, which presents a certain application prospect in the engineering drag reduction field, e.g., for launch vehicles, ship masts, submarine pipelines, etc.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 216
Author(s):  
Emanuel A. R. Camacho ◽  
Fernando M. S. P. Neves ◽  
André R. R. Silva ◽  
Jorge M. M. Barata

Natural flight has consistently been the wellspring of many creative minds, yet recreating the propulsive systems of natural flyers is quite hard and challenging. Regarding propulsive systems design, biomimetics offers a wide variety of solutions that can be applied at low Reynolds numbers, achieving high performance and maneuverability systems. The main goal of the current work is to computationally investigate the thrust-power intricacies while operating at different Reynolds numbers, reduced frequencies, nondimensional amplitudes, and mean angles of attack of the oscillatory motion of a NACA0012 airfoil. Simulations are performed utilizing a RANS (Reynolds Averaged Navier-Stokes) approach for a Reynolds number between 8.5×103 and 3.4×104, reduced frequencies within 1 and 5, and Strouhal numbers from 0.1 to 0.4. The influence of the mean angle-of-attack is also studied in the range of 0∘ to 10∘. The outcomes show ideal operational conditions for the diverse Reynolds numbers, and results regarding thrust-power correlations and the influence of the mean angle-of-attack on the aerodynamic coefficients and the propulsive efficiency are widely explored.


Sign in / Sign up

Export Citation Format

Share Document