Numerical Simulation of Liquid Water Behavior in Separator-Channels in PEMFC Using LBM

Author(s):  
Yutaka Tabe ◽  
Takamichi Ochi ◽  
Kazushige Kikuta ◽  
Takemi Chikahisa ◽  
Hideki Shinohara

In a polymer electrolyte membrane fuel cell, the condensed water in the separator-channel prevents the supply of reactants to electrodes, which deteriorates the cell performance. The Lattice Boltzmann simulation has been conducted to understand the behavior of condensed water in the separator-channels. The scheme for the two-phase flow with large density difference was applied and the boundary condition for wettability at the corner inside the channel was examined. The present simulation demonstrates the effects of the cross-sectional shape, the wettability of channel and the volume of condensed water on the liquid water behavior. In the hydrophilic separator-channels, the liquid water spreads along the channel wall to form film and, in a specific condition, the water draws away from the gas diffusion layer, which suppresses the flooding. On the other hand, the liquid water forms sphere, covering larger area of the surface of gas diffusion layer in the hydrophobic separator-channels, but the drain performance of liquid water is superior.

Author(s):  
Mohammad Habiballahi ◽  
Hasan Hassanzadeh ◽  
Mohammad Rahnama ◽  
Seyed Ali Mirbozorgi ◽  
Ebrahim Jahanshahi Javaran

In this paper, a two-dimensional model has been developed to simulate the liquid water transport in a cathode gas diffusion layer with different porosity gradients in polymer electrolyte membrane fuel cells (PEMFCs). Due to the complexity of porous media, the simulation was carried out by lattice Boltzmann method. According to dimensionless numbers that characterize liquid water transport in porous media, simulation conditions were similar to the liquid water transfer into the gas diffusion layer of PEMFC. Different gas diffusion layers were created randomly by solid circular particles with an average diameter of [Formula: see text] and the numerical code was validated by conducting several tests. The results indicated that capillary force is the main factor in liquid water transport in the gas diffusion layer, while viscous and gravitational forces do not have a significant effect. In addition to improve the water management, the gas diffusion layer should have a positive porosity gradient, i.e. the porosity increases along the thickness. Also, under the same boundary conditions and at the average porosity (0.659), the saturation distribution curves in three porous media were compared including the gas diffusion layer with porosity gradient, the gas diffusion layer with the micro-porous layer, and the gas diffusion layer with uniform porosity. The average liquid water saturation in the gas diffusion layer with the 10% porosity gradient was 20.2% lower than in the gas diffusion layer with uniform porosity and 10.5% lower than the gas diffusion layer + micro-porous layer. Furthermore, upon elevation of the porosity gradient in the gas diffusion layer, the average liquid water saturation in the gas diffusion layer decreased. Specifically, as the porosity gradient rose from 10% to 14% and 18.5%, the average liquid water saturation values decreased to 29.8% and 38.8%, respectively compared with the gas diffusion layer with uniform porosity.


Author(s):  
Yutaka Tabe ◽  
Kohsuke Kibo ◽  
Kazushige Kikuta ◽  
Takemi Chikahisa ◽  
Masaya Kozakai

In a polymer electrolyte membrane (PEM) fuel cell, the condensed water in the separator-channel prevents the supply of reactants to electrodes, which deteriorates the cell performance. The Lattice Boltzmann simulation has been developed to understand the behavior of condensed water in the separator-channels. The calculation process was improved, and the effect on the stability and reliability of simulation of two-phase flows with large density difference was confirmed. Further, the comparison with experiment of the falling water droplet by gravitation on the slope of micro porous layer was conducted to validate effectiveness of the improved simulation. It was shown that the simulation can express the increase in falling speed of water droplet and the effect of inclined angle of the slope, and our simulation is effective enough to estimate the liquid water and air flow in the separator-channel. Finally, the simulation of liquid water behaviors in separator-channels with various cross-sectional shapes was conducted, and the drain efficiency of water droplet of separator-channel was discussed.


Sign in / Sign up

Export Citation Format

Share Document